IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v219y2022ics0951832021007390.html
   My bibliography  Save this article

Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems

Author

Listed:
  • Yan, R.
  • Dunnett, S.J.
  • Jackson, L.M.

Abstract

Multi-load Automated Guided Vehicle's (AGV) are regarded as a potential tool to tackle the low-efficiency issue that have plagued traditional single-load AGV systems for many years. However, to date, the optimal design and operation of multi-load AGV systems is still an unresolved question. In order to explore the answer to this question and help operators make decisions during the design and operation of these systems, this article will use Coloured Petri nets (CPN) to develop a mathematical model to investigate the performance (i.e., the total number of items delivered within a given time) of the multi-load AGV system in various scenarios. The research has shown that the failure of multi-load AGVs can significantly lower the performance of the AGV system. Although it is possible to maintain high system performance by performing onsite corrective maintenance, the research shows that this can be achieved using a combination of periodic maintenance and backup AGV use. Finally, it is found that increasing the number of multi-load AGVs can increase system performance, but will decrease the efficiency (i.e., the average number of items delivered per AGV) of the individual AGVs in the system due to the increased traffic conflicts and hence longer waiting times.

Suggested Citation

  • Yan, R. & Dunnett, S.J. & Jackson, L.M., 2022. "Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007390
    DOI: 10.1016/j.ress.2021.108264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Chen & Lee Kong Tiong, 2019. "Using queuing theory and simulated annealing to design the facility layout in an AGV-based modular manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(17), pages 5538-5555, September.
    2. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    5. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Naybour, Matthew & Remenyte-Prescott, Rasa & Boyd, Matthew J., 2019. "Reliability and efficiency evaluation of a community pharmacy dispensing process using a coloured Petri-net approach," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 258-268.
    7. Latsou, Christina & Dunnett, Sarah J. & Jackson, Lisa M., 2019. "A new methodology for automated Petri Net generation: Method application," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 113-123.
    8. Eriksen, Stig & Utne, Ingrid Bouwer & Lützen, Marie, 2021. "An RCM approach for assessing reliability challenges and maintenance needs of unmanned cargo ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Fazlollahtabar, Hamed & Saidi-Mehrabad, Mohammad & Balakrishnan, Jaydeep, 2015. "Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 34-44.
    10. Sheng, Jingyu & Prescott, Darren, 2019. "A coloured Petri net framework for modelling aircraft fleet maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 67-88.
    11. Mena, R. & Viveros, P. & Zio, E. & Campos, S., 2021. "An optimization framework for opportunistic planning of preventive maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Zhou, Jianfeng & Reniers, Genserik, 2020. "Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Yan, Rundong & Dunnett, S.J. & Jackson, L.M., 2018. "Novel methodology for optimising the design, operation and maintenance of a multi-AGV system," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 130-139.
    14. Chahrour, Nour & Nasr, Mohamad & Tacnet, Jean-Marc & Bérenguer, Christophe, 2021. "Deterioration modeling and maintenance assessment using physics-informed stochastic Petri nets: Application to torrent protection structures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Liu, Qiong & Guo, Kai & Wu, Xianguo & Xiao, Zhonghua & Zhang, Limao, 2024. "Simulation-based rescue plan modeling and performance assessment towards resilient metro systems under emergency," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Agnieszka A. Tubis & Honorata Poturaj, 2022. "Risk Related to AGV Systems—Open-Access Literature Review," Energies, MDPI, vol. 15(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Liu, Shuanglei & Li, Weijun & Gao, Peng & Sun, Yibo, 2022. "Modeling and performance analysis of gas leakage emergency disposal process in gas transmission station based on Stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Sun, Qinying & Ma, Haiqun, 2024. "Modelling and performance analysis of the COVID-19 emergency collaborative process based on a stochastic Petri net," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    7. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Caroline Lloyd & Jonathan Payne, 2021. "Fewer jobs, better jobs? An international comparative study of robots and ‘routine’ work in the public sector," Industrial Relations Journal, Wiley Blackwell, vol. 52(2), pages 109-124, March.
    9. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    12. Marilena Jianu & Leonard Dăuş & Vlad-Florin Drăgoi & Valeriu Beiu, 2023. "The Roots of the Reliability Polynomials of Circular Consecutive- k -out-of- n :F Systems," Mathematics, MDPI, vol. 11(20), pages 1-12, October.
    13. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Victor Bolbot & Gerasimos Theotokatos & Rainer Hamann & George Psarros & Evangelos Boulougouris, 2021. "Dynamic Blackout Probability Monitoring System for Cruise Ship Power Plants," Energies, MDPI, vol. 14(20), pages 1-19, October.
    15. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Asef-Vaziri, Ardavan & Kazemi, Morteza & Eshghi, Kourosh & Lahmar, Maher, 2010. "An ant colony system for enhanced loop-based aisle-network design," European Journal of Operational Research, Elsevier, vol. 207(1), pages 110-120, November.
    17. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    18. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    19. Chahrour, Nour & Bérenguer, Christophe & Tacnet, Jean-Marc, 2024. "Incorporating cascading effects analysis in the maintenance policy assessment of torrent check dams against torrential floods," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.