IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v135y2015icp34-44.html
   My bibliography  Save this article

Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system

Author

Listed:
  • Fazlollahtabar, Hamed
  • Saidi-Mehrabad, Mohammad
  • Balakrishnan, Jaydeep

Abstract

This paper proposes an integrated Markovian and back propagation neural network approaches to compute reliability of a system. While states of failure occurrences are significant elements for accurate reliability computation, Markovian based reliability assessment method is designed. Due to drawbacks shown by Markovian model for steady state reliability computations and neural network for initial training pattern, integration being called Markov-neural is developed and evaluated. To show efficiency of the proposed approach comparative analyses are performed. Also, for managerial implication purpose an application case for multiple automated guided vehicles (AGVs) in manufacturing networks is conducted.

Suggested Citation

  • Fazlollahtabar, Hamed & Saidi-Mehrabad, Mohammad & Balakrishnan, Jaydeep, 2015. "Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 34-44.
  • Handle: RePEc:eee:reensy:v:135:y:2015:i:c:p:34-44
    DOI: 10.1016/j.ress.2014.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael O. Ball & Feng L. Lin, 1993. "A Reliability Model Applied to Emergency Service Vehicle Location," Operations Research, INFORMS, vol. 41(1), pages 18-36, February.
    2. Lisnianski, Anatoly & Elmakias, David & Laredo, David & Ben Haim, Hanoch, 2012. "A multi-state Markov model for a short-term reliability analysis of a power generating unit," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 1-6.
    3. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Hamed Fazlollahtabar & Mohammad Saidi-Mehrabad, 2013. "Optimising a multi-objective reliability assessment in multiple AGV manufacturing system," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 16(3), pages 352-372.
    6. Takamura, Yoshiharu & Tone, Kaoru, 2003. "A comparative site evaluation study for relocating Japanese government agencies out of Tokyo," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 85-102, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimi, Behzad & Niaki, S.T.A. & Haleh, Hassan & Naderi, Bahman, 2018. "Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 92-104.
    2. Yan, R. & Dunnett, S.J. & Jackson, L.M., 2022. "Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Behzad Karimi & Seyed Taghi Akhavan Niaki & Amir Hossein Niknamfar & Mahsa Gareh Hassanlu, 2021. "Multi-objective optimization of job shops with automated guided vehicles: A non-dominated sorting cuckoo search algorithm," Journal of Risk and Reliability, , vol. 235(2), pages 306-328, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    2. Amy H. I. Lee & Chun Yu Lin & He-Yau Kang & Wen Hsin Lee, 2012. "An Integrated Performance Evaluation Model for the Photovoltaics Industry," Energies, MDPI, vol. 5(4), pages 1-21, April.
    3. H Seol & H Lee & S Kim & Y Park, 2008. "The impact of information technology on organizational efficiency in public services: a DEA-based DT approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 231-238, February.
    4. Ravi Kumar Jain & Ramachandran Natarajan & Amlan Ghosh, 2016. "Decision Tree Analysis for Selection of Factors in DEA: An Application to Banks in India," Global Business Review, International Management Institute, vol. 17(5), pages 1162-1178, October.
    5. Kong, Wei-Hsin & Fu, Tsu-Tan, 2012. "Assessing the performance of business colleges in Taiwan using data envelopment analysis and student based value-added performance indicators," Omega, Elsevier, vol. 40(5), pages 541-549.
    6. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    7. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    8. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    9. Ruiz, José L. & Segura, José V. & Sirvent, Inmaculada, 2015. "Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities," European Journal of Operational Research, Elsevier, vol. 242(2), pages 594-605.
    10. Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
    11. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    12. Athanassoglou, Stergios, 2015. "Revisiting Worst-case DEA for Composite Indicators," Climate Change and Sustainable Development 198712, Fondazione Eni Enrico Mattei (FEEM).
    13. Seyed Saeed Hosseinian & Hamidreza Navidi & Abas Hajfathaliha, 2012. "A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 21(3), pages 233-254, May.
    14. Lin, Ming-Ian & Lee, Yuan-Duen & Ho, Tsai-Neng, 2011. "Applying integrated DEA/AHP to evaluate the economic performance of local governments in China," European Journal of Operational Research, Elsevier, vol. 209(2), pages 129-140, March.
    15. Mohammad Pakkar, 2015. "An integrated approach based on DEA and AHP," Computational Management Science, Springer, vol. 12(1), pages 153-169, January.
    16. Fusco, Elisa & Maggi, Bernardo & Rizzuto, Livia, 2022. "Alternative indicators for the evaluation of renewables in Europe: An efficiency approach," Renewable Energy, Elsevier, vol. 190(C), pages 48-65.
    17. Fu-Chiang Yang & Rui-Hsin Kao & Yi-Tui Chen & Yueh-Fei Ho & Cheng-Chung Cho & Shi-Wei Huang, 2018. "A Common Weight Approach to Construct Composite Indicators: The Evaluation of Fourteen Emerging Markets," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(2), pages 463-479, June.
    18. Lee, Seonghee & Lee, Hakyeon, 2015. "Measuring and comparing the R&D performance of government research institutes: A bottom-up data envelopment analysis approach," Journal of Informetrics, Elsevier, vol. 9(4), pages 942-953.
    19. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    20. Amy H. I. Lee & He-Yau Kang & Chun-Yu Lin & Kuan-Chin Shen, 2015. "An Integrated Decision-Making Model for the Location of a PV Solar Plant," Sustainability, MDPI, vol. 7(10), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:135:y:2015:i:c:p:34-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.