IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006385.html
   My bibliography  Save this article

Optimal condition-based maintenance policy for leased equipment considering hybrid preventive maintenance and periodic inspection

Author

Listed:
  • Liu, Biyu
  • Pang, Jie
  • Yang, Haidong
  • Zhao, Yilin

Abstract

Innovations in technology have made the structure of leased equipment more complex, which poses a challenge for lessors to develop maintenance policies. In view of the situation that the single periodic preventive maintenance (PM) policy during leasing activities may cause excessive or insufficient maintenance on the leased equipment, a condition-based maintenance (CBM) policy considering hybrid preventive maintenance (HPM) and periodic inspections is proposed. This policy contains imperfect preventive maintenance (IPM), preventive replacement (PR) and corrective maintenance (CM). The lessor can decide to take maintenance actions depending on whether the state of the equipment reaches the corresponding maintenance threshold. The warranty period of the leased equipment is also considered. To seal the deal, the lessor will give a discount on the rental to cover the CM costs and penalties out of the warranty period. To minimize the lessor's costs, we propose a CBM decision model to determine the optimal inspection period, PM threshold and PR period. The results show that the HPM policy can reduce leasing costs by about 5 –15 % for the lessor compared to that of the single PM policy.

Suggested Citation

  • Liu, Biyu & Pang, Jie & Yang, Haidong & Zhao, Yilin, 2024. "Optimal condition-based maintenance policy for leased equipment considering hybrid preventive maintenance and periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006385
    DOI: 10.1016/j.ress.2023.109724
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinting & Zhou, Zhuang & Peng, Hao, 2017. "Flexible decision models for a two-dimensional warranty policy with periodic preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 14-27.
    2. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    3. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    5. Wang, Jiantai & Zhou, Shihan & Peng, Rui & Qiu, Qingan & Yang, Li, 2023. "An inspection-based replacement planning in consideration of state-driven imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    8. Amel Ben Mabrouk & Anis Chelbi, 2023. "Optimal maintenance policy for equipment leased with base and extended warranty," International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 898-909, February.
    9. Zhang, Yunzheng & Zhang, Xiaohong & Zeng, Jianchao & Wang, Jinhe & Xue, Songdong, 2019. "Lessees’ satisfaction and optimal condition-based maintenance policy for leased system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Xiaolin Wang & Lishuai Li & Min Xie, 2019. "Optimal preventive maintenance strategy for leased equipment under successive usage-based contracts," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5705-5724, September.
    11. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    12. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Dinh, Duc-Hanh & Do, Phuc & Hoang, Van-Thanh & Vo, Nhu-Thanh & Bang, Tao Quang, 2024. "A predictive maintenance policy for manufacturing systems considering degradation of health monitoring device," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    2. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    3. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    4. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    6. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    7. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. de Jonge, Bram, 2019. "Discretizing continuous-time continuous-state deterioration processes, with an application to condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 1-5.
    9. Lee, Juseong & Mitici, Mihaela, 2022. "Multi-objective design of aircraft maintenance using Gaussian process learning and adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Roy Assaf & Phuc Do & Samia Nefti-Meziani & Philip Scarf, 2018. "Wear rate–state interactions within a multi-component system: a study of a gearbox-accelerated life testing platform," Journal of Risk and Reliability, , vol. 232(4), pages 425-434, August.
    11. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Qi, Faqun & Huang, Meiqi, 2024. "Joint optimization of maintenance and spares inventory policy for a series-parallel system considering dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    14. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    17. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    20. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.