IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v209y2021ics0951832021000302.html
   My bibliography  Save this article

Discrete time dynamic reliability modeling for systems with multistate components

Author

Listed:
  • Alkaff, Abdullah

Abstract

This study proposes modeling techniques for the exact dynamic reliability analyses of systems with the lifetimes of all components following independent and nonidentical discrete phase-type (DPH) distributions. The systems may have series, parallel, standby, K-out-of-N, and bridge structures with any combinations of them. The models produce numerical formulas and algorithms for generating system reliability and hazard functions; thus, they are applicable to the dynamic reliability analysis of systems, including networks. The approach is by showing that the system lifetime follows a DPH distribution. For network reliability analysis, the DPH distribution is generalized into a matrix-geometric (MG) distribution. The use of the DPH distribution makes the models suitable for systems with multistate components and simplifies the calculations of the system reliability measures. Its effectiveness is illustrated using results from complex structure systems.

Suggested Citation

  • Alkaff, Abdullah, 2021. "Discrete time dynamic reliability modeling for systems with multistate components," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000302
    DOI: 10.1016/j.ress.2021.107462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alkaff, Abdullah & Qomarudin, Mochamad Nur & Bilfaqih, Yusuf, 2020. "Network reliability analysis: Matrix-exponential approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 37-46.
    4. Goharshady, Amir Kafshdar & Mohammadi, Fatemeh, 2020. "An efficient algorithm for computing network reliability in small treewidth," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Davies, Katherine & Dembińska, Anna, 2019. "On the number of failed components in a k-out-of-n system upon system failure when the lifetimes are discretely distributed," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 47-61.
    6. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    7. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Lee, Dooyoul & Choi, Dongsu, 2020. "Analysis of the reliability of a starter-generator using a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Abdullah Alkaff & Mochamad Nur Qomarudin, 2020. "Modeling and analysis of system reliability using phase‐type distribution closure properties," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(4), pages 548-569, July.
    10. Huang, Ding-Hsiang & Huang, Cheng-Fu & Lin, Yi-Kuei, 2020. "A novel minimal cut-based algorithm to find all minimal capacity vectors for multi-state flow networks," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1107-1114.
    11. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    12. Ruiz-Castro, Juan Eloy & Pérez-Ocón, Rafael & Fernández-Villodre, Gemma, 2008. "Modelling a reliability system governed by discrete phase-type distributions," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1650-1657.
    13. Levitin, Gregory & Amari, Suprasad V., 2010. "Approximation algorithm for evaluating time-to-failure distribution of k-out-of-n system with shared standby elements," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 396-401.
    14. Li, Yan & Cui, Lirong & Lin, Cong, 2017. "Modeling and analysis for multi-state systems with discrete-time Markov regime-switching," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 41-49.
    15. Anatoly Lisnianski & Ilia Frenkel & Lev Khvatskin, 2021. "Modern Dynamic Reliability Analysis for Multi-state Systems," Springer Series in Reliability Engineering, Springer, number 978-3-030-52488-3, March.
    16. Zarezadeh, S. & Asadi, M. & Balakrishnan, N., 2014. "Dynamic network reliability modeling under nonhomogeneous Poisson processes," European Journal of Operational Research, Elsevier, vol. 232(3), pages 561-571.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Dembińska, Anna & Eryilmaz, Serkan, 2021. "Discrete time series–parallel system and its optimal configuration," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Du, Yi-Mu & Sun, C.P., 2022. "A novel interpretable model of bathtub hazard rate based on system hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Eryilmaz, Serkan & Yalcin, Femin, 2022. "The number of failed components upon system failure when the lifetimes are discretely distributed," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Yu, Xiaoyun & Hu, Linmin & Ma, Mengrao, 2023. "Reliability measures of discrete time k-out-of-n: G retrial systems based on Bernoulli shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingkui & Lu, Yuze & Liu, Xiaona & Jiang, Xiuhong, 2023. "Reliability analysis of cold-standby phased-mission system based on GO-FLOW methodology and the universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    3. Dembińska, Anna & Eryilmaz, Serkan, 2021. "Discrete time series–parallel system and its optimal configuration," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Min Gong & Hanlin Liu & Rui Peng, 2020. "Redundancy allocation of mixed warm and cold standby components in repairable K-out-of-N systems," Journal of Risk and Reliability, , vol. 234(5), pages 696-707, October.
    5. Alkaff, Abdullah & Qomarudin, Mochamad Nur & Bilfaqih, Yusuf, 2021. "Network reliability analysis: matrix-exponential approach," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures: A Matrix-Analytic Approach," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
    8. Cui, Lirong & Wu, Bei, 2019. "Extended Phase-type models for multistate competing risk systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 1-16.
    9. Xu, Xiu-Zhen & Niu, Yi-Feng & Song, Yi-Fan, 2021. "Computing the reliability of a stochastic distribution network subject to budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    11. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    12. Zhiqiang Liu & Wenbo Zhu & Hongzhou Zhang & Shengjin Wang & Lu Fang & Weijun Hong & Hua Shao & Guopeng Wang, 2020. "Reliability evaluation of dynamic face recognition systems based on improved Fuzzy Dynamic Bayesian Network," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
    13. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    16. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    17. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    18. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    19. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    20. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.