IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021005160.html
   My bibliography  Save this article

Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels

Author

Listed:
  • Chang, Miaoxin
  • Huang, Xianzhen
  • Coolen, Frank P.A.
  • Coolen-Maturi, Tahani

Abstract

Degradation-shock failure processes widely exist in practice, and extensive work has been carried out to better describe such processes. In this paper, a new model is developed for reliability analysis of systems subject to dependent degradation-shock failure processes. The proposed model extends the previous work by considering the effects of the degradation levels on both the degradation rates and the hard failure thresholds. Instead of shifting with the shock levels, the degradation rates are supposed to increase with the degradation levels, and the hard failure thresholds decrease when the system deteriorates to certain levels. Then, the general reliability functions for the systems subject to multi-state degradation are provided, after deriving the reliability formulas for the systems with two-state degradation. In addition, the accuracy of the proposed methods is verified by Monte-Carlo simulation. Finally, a numerical example is presented to illustrate the validity of the presented model, and analytical results of the proposed model are compared with previous work. The results indicate that the presented method offers a more realistic system reliability evaluation.

Suggested Citation

  • Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005160
    DOI: 10.1016/j.ress.2021.108007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanling Song & David W. Coit & Qianmei Feng, 2016. "Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 720-735, August.
    2. van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
    3. Lei Jiang & Qianmei Feng & David W. Coit, 2015. "Modeling zoned shock effects on stochastic degradation in dependent failure processes," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 460-470, May.
    4. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    5. Gao, Hongda & Cui, Lirong & Kong, Dejing, 2018. "Reliability analysis for a Wiener degradation process model under changing failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 1-8.
    6. Linkan Bian & Nagi Gebraeel, 2014. "Stochastic framework for partially degradation systems with continuous component degradation‐rate‐interactions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(4), pages 286-303, June.
    7. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    9. Mauricio Sánchez-Silva & Georgia-Ann Klutke, 2016. "Degradation: Data Analysis and Analytical Modeling," Springer Series in Reliability Engineering, in: Reliability and Life-Cycle Analysis of Deteriorating Systems, chapter 0, pages 79-116, Springer.
    10. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    11. Linkan Bian & Nagi Gebraeel, 2014. "Stochastic modeling and real-time prognostics for multi-component systems with degradation rate interactions," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 470-482.
    12. Zhang, Jian & Huang, Xiaoyan & Fang, Youtong & Zhou, Jing & Zhang, He & Li, Jing, 2016. "Optimal inspection-based preventive maintenance policy for three-state mechanical components under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 95-103.
    13. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui, 2017. "Modeling dependent competing failure processes with degradation-shock dependence," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 422-430.
    14. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    15. An, Zongwen & Sun, Daoming, 2017. "Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Dong & Jia, Xujie & Song, Xueying, 2024. "Reliability analysis of systems with n-stage shock process and m-stage degradation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    2. Li, Jingkui & Liu, Xiaona & Lu, Yuze & Wang, Hanzheng, 2024. "Reliability analysis on energy storage system combining GO-FLOW methodology with GERT network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Wu, Bei & Wei, Xiaohua & Zhang, Yamei & Bai, Sijun, 2023. "Modeling dynamic environment effects on dependent failure processes with varying failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    2. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    3. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Geng, Yixuan & Wang, Shaoping & Shi, Jian & Zhang, Yuwei & Wang, Weijie, 2023. "Reliability modeling of phased degradation under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    9. Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    11. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    16. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    17. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Chen, Yunxia & Zhang, Wenbo & Xu, Dan, 2019. "Reliability assessment with varying safety threshold for shock resistant systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 49-60.
    19. Tingting Huang & Songming Chen & Yuepu Zhao & Wei Dai, 2023. "Reliability assessment of degradation processes with random shocks considering recoverable shock damages," Journal of Risk and Reliability, , vol. 237(6), pages 1150-1162, December.
    20. Yousefi, Nooshin & Coit, David W. & Song, Sanling & Feng, Qianmei, 2019. "Optimization of on-condition thresholds for a system of degrading components with competing dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.