IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v47y2015i5p460-470.html
   My bibliography  Save this article

Modeling zoned shock effects on stochastic degradation in dependent failure processes

Author

Listed:
  • Lei Jiang
  • Qianmei Feng
  • David W. Coit

Abstract

This article studies a system that experiences two dependent competing failure processes, in which shocks are categorized into different shock zones. These two failure processes, a stochastic degradation process and a random shock process, are dependent because arriving shocks can cause instantaneous damage on the degradation process. In existing studies, every shock causes an abrupt damage on degradation. However, this may not be the case when shock loads are small and within the tolerance of system resistance. In the proposed model, only shock loads that are larger than a certain level are considered to cause abrupt damage on degradation, which makes this new model realistic and challenging. Shocks are divided into three zones based on their magnitudes: safety zone, damage zone, and fatal zone. The abrupt damage is modeled using an explicit function of shock load exceedances (differences between load magnitudes and a given threshold). Due to the complexity in modeling these two dependent stochastic failure processes, no closed form of the reliability function can be derived. Monte Carlo importance sampling is used to estimate the system reliability. Finally, two application examples with sensitivity analyses are presented to demonstrate the models.

Suggested Citation

  • Lei Jiang & Qianmei Feng & David W. Coit, 2015. "Modeling zoned shock effects on stochastic degradation in dependent failure processes," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 460-470, May.
  • Handle: RePEc:taf:uiiexx:v:47:y:2015:i:5:p:460-470
    DOI: 10.1080/0740817X.2014.955152
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2014.955152
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2014.955152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:47:y:2015:i:5:p:460-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.