IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v157y2017icp129-138.html
   My bibliography  Save this article

Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level

Author

Listed:
  • An, Zongwen
  • Sun, Daoming

Abstract

Considering that products with high reliability have ability to resist small shock loads, a new reliability model is proposed for system experiencing dependent competing failure processes(DCFP) with shock loads above a certain level. Such shock loads are separated by the shock threshold, beyond which are fatal shocks causing sudden failure of systems. The remaining part between the certain level and shock threshold are general shock loads causing sudden degradation increments (SDI). Moreover, an explicit relationship between SDI and the magnitude of shock loads is established for reliability assessment. In this study, we consider two kinds of DCFP: (1) a shock process and a degradation process; (2) a shock process and multiple degradation processes. In case (1), we consider the dependence between shock process and degradation process with conditional probability. In case (2), we not only consider the dependence between shock process and degradation processes with conditional probability, but also the dependence between multiple degradation processes with Copulas. Finally, the effectiveness of proposed models is demonstrated by reliability analysis of the microengine developed by Sandia National Laboratories and an extended numerical example. Besides, sensitivity analysis is performed to assess the effects of model parameters on the system reliability.

Suggested Citation

  • An, Zongwen & Sun, Daoming, 2017. "Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 129-138.
  • Handle: RePEc:eee:reensy:v:157:y:2017:i:c:p:129-138
    DOI: 10.1016/j.ress.2016.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016304343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Jiang & Qianmei Feng & David W. Coit, 2015. "Modeling zoned shock effects on stochastic degradation in dependent failure processes," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 460-470, May.
    2. Khac Tuan Huynh & Inma T. Castro & Anne Barros & Christophe Bérenguer, 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," Post-Print hal-00790729, HAL.
    3. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    4. Keedy, Elias & Feng, Qianmei, 2012. "A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 94-101.
    5. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    6. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    2. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    5. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Eryilmaz, Serkan, 2017. "δ-shock model based on Polya process and its optimal replacement policy," European Journal of Operational Research, Elsevier, vol. 263(2), pages 690-697.
    8. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    10. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    11. Chen, Yunxia & Zhang, Wenbo & Xu, Dan, 2019. "Reliability assessment with varying safety threshold for shock resistant systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 49-60.
    12. Wang, Jia & Li, Zhigang & Bai, Guanghan & Zuo, Ming J., 2020. "An improved model for dependent competing risks considering continuous degradation and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Junxiang Li & Jianqiao Chen & Zhiqiang Chen, 2020. "A new cumulative damage model for time-dependent reliability analysis of deteriorating structures," Journal of Risk and Reliability, , vol. 234(2), pages 290-302, April.
    15. Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    17. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Wang, Jia & Bai, Guanghan & Li, Zhigang & Zuo, Ming J., 2020. "A general discrete degradation model with fatal shocks and age- and state-dependent nonfatal shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    2. Hongda Gao & Dejing Kong & Yixin Sun, 2022. "Reliability modeling and analysis for systems governed by multiple competing failures processes," Journal of Risk and Reliability, , vol. 236(2), pages 256-265, April.
    3. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    4. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    5. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Tingting Huang & Songming Chen & Yuepu Zhao & Wei Dai, 2023. "Reliability assessment of degradation processes with random shocks considering recoverable shock damages," Journal of Risk and Reliability, , vol. 237(6), pages 1150-1162, December.
    7. Kong, Dejing & Qin, Chengwei & He, Yong & Cui, Lirong, 2017. "Sensor-based calibrations to improve reliability of systems subject to multiple dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 101-113.
    8. Xu, Dong & Jia, Xujie & Song, Xueying, 2024. "Reliability analysis of systems with n-stage shock process and m-stage degradation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Lin, Yan-Hui & Li, Yan-Fu & Zio, Enrico, 2018. "A comparison between Monte Carlo simulation and finite-volume scheme for reliability assessment of multi-state physics systems," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 1-11.
    10. Tsai, Hsin-Nan & Sheu, Shey-Huei & Zhang, Zhe George, 2017. "A trivariate optimal replacement policy for a deteriorating system based on cumulative damage and inspections," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 74-88.
    11. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2018. "A new state-dependent degradation process and related model misidentification problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1027-1038.
    12. Rassoul Noorossana & Kamyar Sabri-Laghaie, 2015. "Reliability and maintenance models for a dependent competing-risk system with multiple time-scales," Journal of Risk and Reliability, , vol. 229(2), pages 131-142, April.
    13. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    14. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    15. Dahal, Keshav & Al-Arfaj, Khalid & Paudyal, Krishna, 2015. "Modelling generator maintenance scheduling costs in deregulated power markets," European Journal of Operational Research, Elsevier, vol. 240(2), pages 551-561.
    16. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    17. Tie Chen & Songlin Zheng & Jinzhi Feng, 2017. "Statistical dependency analysis of multiple competing failure causes of fuel cell engines," Journal of Risk and Reliability, , vol. 231(2), pages 83-90, April.
    18. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:157:y:2017:i:c:p:129-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.