IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v152y2016icp95-103.html
   My bibliography  Save this article

Optimal inspection-based preventive maintenance policy for three-state mechanical components under competing failure modes

Author

Listed:
  • Zhang, Jian
  • Huang, Xiaoyan
  • Fang, Youtong
  • Zhou, Jing
  • Zhang, He
  • Li, Jing

Abstract

The degradation of mechanical components is non-stationary and their degradation level can only be detected through offline discrete inspection in most cases. Aiming at the effect of the non-stationary feature and the delay of state detection caused by discrete inspection on long-run operation cost, this paper focuses on proposing an optimal inspection-based maintenance policy for three-state mechanical components subject to competing failure modes. A double-Wiener-process degradation model is established to describe the two operation states, which includes two Wiener process models under the same law but with different parameters. In addition, a preventive maintenance policy including a degradation threshold, an age threshold and a degradation control limit are adopted. A five-scenario probability-based model is proposed to describe the state evolution during one inspection interval and then the analytical model of the impact of delay on detecting state-transition and degradation-level on preventive maintenance policy is proposed. An optimization model of an inspection- based maintenance is established. Finally, sensitivity analysis in terms of the decision variables for state-transition time distribution and parameters in wear-out state is carried out based on numerical examples and the efficiency and superiority of the proposed policy is demonstrated by comparing with the current two-state maintenance policy.

Suggested Citation

  • Zhang, Jian & Huang, Xiaoyan & Fang, Youtong & Zhou, Jing & Zhang, He & Li, Jing, 2016. "Optimal inspection-based preventive maintenance policy for three-state mechanical components under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 95-103.
  • Handle: RePEc:eee:reensy:v:152:y:2016:i:c:p:95-103
    DOI: 10.1016/j.ress.2016.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201600048X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baussaron, Julien & Mihaela, Barreau & Léo, Gerville-Réache & Fabrice, Guérin & Paul, Schimmerling, 2014. "Reliability assessment based on degradation measurements: How to compare some models?," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 236-241.
    2. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    3. Khac Tuan Huynh & Inma T. Castro & Anne Barros & Christophe Bérenguer, 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," Post-Print hal-00790729, HAL.
    4. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, March.
    5. Zhang, Mimi & Gaudoin, Olivier & Xie, Min, 2015. "Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 245(2), pages 531-541.
    6. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    7. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    8. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    9. Maxim Finkelstein & Ji Hwan Cha, 2013. "Burn-in for Heterogeneous Populations," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 261-312, Springer.
    10. I.T. Castro & N.C. Caballé & C.J. Pérez, 2015. "A condition-based maintenance for a system subject to multiple degradation processes and external shocks," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1692-1704, July.
    11. Wang, Wenbin & Zhao, Fei & Peng, Rui, 2014. "A preventive maintenance model with a two-level inspection policy based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 207-220.
    12. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    13. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    14. Hui-bing Hao & Chun Su & Zhong-zhou Qu, 2013. "Reliability Analysis for Mechanical Components Subject to Degradation Process and Random Shock with Wiener Process," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 531-543, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
    5. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    6. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    7. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    8. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2017. "Bivariate preventive maintenance for repairable systems subject to random shocks," Journal of Risk and Reliability, , vol. 231(6), pages 643-653, December.
    4. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    5. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    6. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    7. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    8. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    9. Cha, Ji Hwan & Finkelstein, Maxim, 2018. "On information-based residual lifetime in survival models with delayed failures," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 209-216.
    10. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    11. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    12. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    14. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    15. Sophie Mercier & Hai Ha Pham, 2016. "A Random Shock Model with Mixed Effect, Including Competing Soft and Sudden Failures, and Dependence," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 377-400, June.
    16. N. C. Caballé & I. T. Castro, 2019. "Assessment of the maintenance cost and analysis of availability measures in a finite life cycle for a system subject to competing failures," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 255-290, March.
    17. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    18. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    19. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    20. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:152:y:2016:i:c:p:95-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.