IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v152y2004i2p476-486.html
   My bibliography  Save this article

Towards an integrated framework for forest fire control

Author

Listed:
  • Dimopoulou, Maria
  • Giannikos, Ioannis

Abstract

No abstract is available for this item.

Suggested Citation

  • Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
  • Handle: RePEc:eee:ejores:v:152:y:2004:i:2:p:476-486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00038-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James I. MacLellan & David L. Martell, 1996. "Basing Airtankers for Forest Fire Control in Ontario," Operations Research, INFORMS, vol. 44(5), pages 677-686, October.
    2. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    3. D Richard & H Beguin & D Peeters, 1990. "The Location of Fire Stations in a Rural Environment: A Case Study," Environment and Planning A, , vol. 22(1), pages 39-52, January.
    4. Pidd, M. & de Silva, F. N. & Eglese, R. W., 1996. "A simulation model for emergency evacuation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 413-419, May.
    5. Berens, Wolfgang & Korling, Franz-Josef, 1985. "Estimating road distances by mathematical functions," European Journal of Operational Research, Elsevier, vol. 21(1), pages 54-56, July.
    6. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    7. I. Vertinsky & S. Brown & H. Schreier & W. A. Thompson & G. C. van Kooten, 1994. "A Hierarchical-GIS-Based Decision Model for Forest Management: The Systems Approach," Interfaces, INFORMS, vol. 24(4), pages 38-53, August.
    8. Martell, David L. & Gunn, Eldon A. & Weintraub, Andres, 1998. "Forest management challenges for operational researchers," European Journal of Operational Research, Elsevier, vol. 104(1), pages 1-17, January.
    9. Andrés Weintraub & B. Bruce Bare, 1996. "New Issues in Forest Land Management from an Operations Research Perspective," Interfaces, INFORMS, vol. 26(5), pages 9-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calkin, David C. & Finney, Mark A. & Ager, Alan A. & Thompson, Matthew P. & Gebert, Krista M., 2011. "Progress towards and barriers to implementation of a risk framework for US federal wildland fire policy and decision making," Forest Policy and Economics, Elsevier, vol. 13(5), pages 378-389, June.
    2. Marion Rauner & Michaela Schaffhauser-Linzatti & Helmut Niessner, 2012. "Resource planning for ambulance services in mass casualty incidents: a DES-based policy model," Health Care Management Science, Springer, vol. 15(3), pages 254-269, September.
    3. Stavros Sakellariou & Stergios Tampekis & Fani Samara & Olga Christopoulou, 2015. "The added value of modern Decision Support Systems (DSS) against forest fires in a global scale," ERSA conference papers ersa15p1246, European Regional Science Association.
    4. Rashidi, Eghbal & Medal, Hugh & Gordon, Jason & Grala, Robert & Varner, Morgan, 2017. "A maximal covering location-based model for analyzing the vulnerability of landscapes to wildfires: Assessing the worst-case scenario," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1095-1105.
    5. Miren Bilbao & Sergio Gil-López & Javier Ser & Sancho Salcedo-Sanz & Mikel Sánchez-Ponte & Antonio Arana-Castro, 2014. "Novel hybrid heuristics for an extension of the dynamic relay deployment problem over disaster areas," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 997-1016, October.
    6. Skorin-Kapov, Nina & Mesarić, Luka & García, Fernando Pereñíguez & Skorin-Kapov, Lea, 2024. "Scheduling aerial resource operations for the extinction of large-scale wildfires," Omega, Elsevier, vol. 122(C).
    7. James Minas & John Hearne & David Martell, 2015. "An integrated optimization model for fuel management and fire suppression preparedness planning," Annals of Operations Research, Springer, vol. 232(1), pages 201-215, September.
    8. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    2. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    3. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    4. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    5. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    6. Masashi Miyagawa, 2020. "Optimal number and length of point-like and line-like facilities of grid and random patterns," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 213-230, April.
    7. Wajid, Shayesta & Nezamuddin, N., 2022. "A robust survival model for emergency medical services in Delhi, India," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    8. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    9. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    10. Jenkins, Phillip R. & Lunday, Brian J. & Robbins, Matthew J., 2020. "Robust, multi-objective optimization for the military medical evacuation location-allocation problem," Omega, Elsevier, vol. 97(C).
    11. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    12. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    13. Geroliminis, Nikolas & Karlaftis, Matthew G. & Skabardonis, Alexander, 2009. "A spatial queuing model for the emergency vehicle districting and location problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 798-811, August.
    14. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    15. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    16. Grubesic, Tony H. & Matisziw, Timothy C. & Murray, Alan T., 2012. "Assessing geographic coverage of the essential air service program," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 124-135.
    17. Alan T. Murray & Daoqin Tong & Kamyoung Kim, 2010. "Enhancing Classic Coverage Location Models," International Regional Science Review, , vol. 33(2), pages 115-133, April.
    18. Andersson, Daniel & Eriksson, Ljusk Ola, 2007. "Effects of temporal aggregation in integrated strategic/tactical and strategic forest planning," Forest Policy and Economics, Elsevier, vol. 9(8), pages 965-981, May.
    19. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    20. Marianov, Vladimir & ReVelle, Charles, 1996. "The Queueing Maximal availability location problem: A model for the siting of emergency vehicles," European Journal of Operational Research, Elsevier, vol. 93(1), pages 110-120, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:152:y:2004:i:2:p:476-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.