IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305421.html
   My bibliography  Save this article

A novel data mining approach for analysis of accident paths and performance assessment of risk control systems

Author

Listed:
  • Singh, Kritika
  • Maiti, J

Abstract

The data mining researches to facilitate the process of safety management is fairly new, compared to other industrial management domains. The implementation of appropriate, effective, and safe risk control systems (RCSs) is vital to ensure zero-accident and zero-harm vision of industrial work-systems. In this work, we propose a data mining based tool to analyze accident paths from incident data and assess the performance of RCSs. Our work upgrades the existing pattern analysis methods through three new types of analyses (i) temporal frequent itemset generation (T-FIG) for studying the time effect on patterns, (ii) elevated severity itemset generation (ESIG) for examining the risk reduction due to RCSs, and (iii) High impact itemset generation (High_impact_IG) to identify accident paths with high risk. T-FIG and ESIG assist in performance assessment of preventive and mitigating RCSs, respectively. The results from each of the analyses are compared and eight types of inferences regarding the performance of RCSs are drawn. The proposed methodology is applied to 612 incident records reported during steel making process in a steel manufacturing plant. It was found that there are four accident paths which have ineffective preventive and mitigating RCSs, have high risk and are probable to recur in future. Two among four of these paths include hot metal/steel/slag as the hazardous element and three of them are due to damaged/degraded/poorly maintained equipment. Moreover, the case study also demonstrates that proposed data mining approach is an effective and easy to use tool for performance assessment of RCSs and accident path analysis.

Suggested Citation

  • Singh, Kritika & Maiti, J, 2020. "A novel data mining approach for analysis of accident paths and performance assessment of risk control systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305421
    DOI: 10.1016/j.ress.2020.107041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    2. Silva, Joaquim F. & Jacinto, Celeste, 2012. "Finding occupational accident patterns in the extractive industry using a systematic data mining approach," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 108-122.
    3. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    4. Ola Svenson, 1991. "The Accident Evolution and Barrier Function (AEB) Model Applied to Incident Analysis in the Processing Industries," Risk Analysis, John Wiley & Sons, vol. 11(3), pages 499-507, September.
    5. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    5. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Casson Moreno, Valeria & Guglielmi, Daniele & Cozzani, Valerio, 2018. "Identification of critical safety barriers in biogas facilities," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 81-94.
    9. Zhou, Jianfeng & Reniers, Genserik, 2020. "Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Zhou, Jianfeng & Reniers, Genserik & Cozzani, Valerio, 2023. "A Petri-net approach for firefighting force allocation analysis of fire emergency response with backups," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    13. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    14. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Zeng, Tao & Wei, Lijun & Reniers, Genserik & Chen, Guohua, 2024. "A comprehensive study for probability prediction of domino effects considering synergistic effects," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    18. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    19. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    20. Jiansong Wu & Zhuqiang Hu & Jinyue Chen & Zheng Li, 2018. "Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network," Sustainability, MDPI, vol. 10(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.