IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v54y2008i7p1313-1321.html
   My bibliography  Save this article

Optimal Allocation of Risk-Reduction Resources in Event Trees

Author

Listed:
  • Hanif D. Sherali

    (Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061)

  • Jitamitra Desai

    (Department of Industrial and Systems Engineering, University of Arizona, Tucson, Arizona 85719)

  • Theodore S. Glickman

    (Department of Decision Sciences, The George Washington University, Washington, D.C. 20052)

Abstract

In this paper, we present a novel quantitative analysis for the strategic planning decision problem of allocating certain available prevention and protection resources to, respectively, reduce the failure probabilities of system safety measures and the total expected loss from a sequence of events. Using an event tree optimization approach, the resulting risk-reduction scenario problem is modeled and then reformulated as a specially structured nonconvex factorable program. We derive a tight linear programming relaxation along with related theoretical insights that serve to lay the foundation for designing a tailored branch-and-bound algorithm that is proven to converge to a global optimum. Computational experience is reported for a hypothetical case study, as well as for several realistic simulated test cases, based on different parameter settings. The results on the simulated test cases demonstrate that the proposed approach dominates the commercial software BARON v7.5 when the latter is applied to solve the original model by more robustly yielding provable optimal solutions that are at an average of 16.6% better in terms of objective function value; and it performs competitively when both models are used to solve the reformulated problem, particularly for larger test instances.

Suggested Citation

  • Hanif D. Sherali & Jitamitra Desai & Theodore S. Glickman, 2008. "Optimal Allocation of Risk-Reduction Resources in Event Trees," Management Science, INFORMS, vol. 54(7), pages 1313-1321, July.
  • Handle: RePEc:inm:ormnsc:v:54:y:2008:i:7:p:1313-1321
    DOI: 10.1287/mnsc.1070.0844
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1070.0844
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1070.0844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. E. Borgonovo & C. L. Smith, 2011. "A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA," Operations Research, INFORMS, vol. 59(6), pages 1461-1476, December.
    3. Brian J. Lunday & Hanif D. Sherali & Theodore S. Glickman, 2010. "The Nested Event Tree Model with Application to Combating Terrorism," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 620-634, November.
    4. Mumtaz Karatas & Ertan Yakıcı & Abdullah Dasci, 2022. "Solving a bi-objective unmanned aircraft system location-allocation problem," Annals of Operations Research, Springer, vol. 319(2), pages 1631-1654, December.
    5. Hanif D. Sherali & Evrim Dalkiran & Theodore S. Glickman, 2011. "Selecting Optimal Alternatives and Risk Reduction Strategies in Decision Trees," Operations Research, INFORMS, vol. 59(3), pages 631-647, June.
    6. Zhang, Yao & Zuo, Fei & Guan, Xin, 2020. "Integrating case-based analysis and fuzzy optimization for selecting project risk response actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:54:y:2008:i:7:p:1313-1321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.