IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i2p307-316.html
   My bibliography  Save this article

A novel parameter estimation method for the Weibull distribution on heavily censored data

Author

Listed:
  • Renyan Jiang

Abstract

It is desired to build the life distribution models of critical components (which are assumed to be non-repairable) of a repairable system as early as possible based on field failure data in order to optimize the operation and maintenance decisions of the components. When the number of the systems under observation is large and the observation duration is relatively short, the samples obtained for modeling are large and heavily censored. For such samples, the classical parameter estimation methods (e.g. maximum likelihood method and least square method) do not provide robust estimates. To address this issue, this article develops a hybrid censoring index to quantitatively describe censoring characteristics of a data set, proposes a novel parameter estimation method based on information extracted from censored observations, and evaluates the accuracy and robustness of the proposed method through a numerical experiment. Its applicable range in terms of the hybrid censoring index is determined through an accuracy analysis. The experiment results show that the proposed approach provides much accurate estimates than the classical methods for heavily censored data. A real-world example is also included.

Suggested Citation

  • Renyan Jiang, 2022. "A novel parameter estimation method for the Weibull distribution on heavily censored data," Journal of Risk and Reliability, , vol. 236(2), pages 307-316, April.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:2:p:307-316
    DOI: 10.1177/1748006X19887648
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19887648
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19887648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Shaomin & Scarf, Philip, 2017. "Two new stochastic models of the failure process of a series system," European Journal of Operational Research, Elsevier, vol. 257(3), pages 763-772.
    2. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
    3. Renyan Jiang, 2015. "Introduction to Quality and Reliability Engineering," Springer Series in Reliability Engineering, Springer, edition 127, number 978-3-662-47215-6, February.
    4. Zhang, L.F. & Xie, M. & Tang, L.C., 2007. "A study of two estimation approaches for parameters of Weibull distribution based on WPP," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 360-368.
    5. Jiang, R., 2014. "A drawback and an improvement of the classical Weibull probability plot," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 135-142.
    6. Zhang, L.F. & Xie, M. & Tang, L.C., 2006. "Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 930-939.
    7. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Renyan & Li, Fengping & Xue, Wei & Cao, Yu & Zhang, Kunpeng, 2023. "A robust mean cumulative function estimator and its application to overhaul time optimization for a fleet of heterogeneous repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Lirong Cui & David W Coit, 2022. "Guest Editorial: SMRLO-2019 Special Issue," Journal of Risk and Reliability, , vol. 236(2), pages 223-224, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    3. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    4. Jiang, Renyan & Qi, Faqun & Cao, Yu, 2023. "Relation between aging intensity function and WPP plot and its application in reliability modelling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Jiang, R., 2020. "A novel two-fold sectional approximation of renewal function and its applications," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2020. "Alternative scales in reliability models for a repairable system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    9. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Reza Ahmadi, 2024. "Reliability and maintenance modeling for a production system by means of point process observations," Annals of Operations Research, Springer, vol. 340(1), pages 3-26, September.
    11. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    12. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    13. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    14. Chengye Ma & Yongjun Du & Lijun Shang & Li Yang & Kaiye Gao, 2023. "Random Maintenance Strategy Modeling of Warranted Products with Reliability Heterogeneity," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    15. Yevkin, Alexander & Krivtsov, Vasiliy, 2020. "A generalized model for recurrent failures prediction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    17. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    18. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    19. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    20. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:2:p:307-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.