IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v161y2017icp87-94.html
   My bibliography  Save this article

A Bayesian analysis of component life expectancy and its implications on the inspection schedule

Author

Listed:
  • Mason, Paolo

Abstract

A model of crack initiation and residual component life is fitted to the inspection history, inclusive of two in-service failures, of a set of gas circulator impellers at two UK power stations. The model is then used to estimate the probability of future in-service failure of each item in scenarios in which the next opportunity for inspection (i.e. detection of a developing crack) is exploited or forgone.

Suggested Citation

  • Mason, Paolo, 2017. "A Bayesian analysis of component life expectancy and its implications on the inspection schedule," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 87-94.
  • Handle: RePEc:eee:reensy:v:161:y:2017:i:c:p:87-94
    DOI: 10.1016/j.ress.2017.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017300340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, H. & Zhou, W. & Zhang, S., 2015. "Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 334-342.
    2. Yuan, X.-X. & Mao, D. & Pandey, M.D., 2009. "A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1838-1847.
    3. Mason, Paolo, 2016. "Approximate Bayesian Computation of the occurrence and size of defects in Advanced Gas-cooled nuclear Reactor boilers," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 21-25.
    4. repec:dau:papers:123456789/5724 is not listed on IDEAS
    5. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    3. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    4. Mason, Paolo, 2016. "Approximate Bayesian Computation of the occurrence and size of defects in Advanced Gas-cooled nuclear Reactor boilers," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 21-25.
    5. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    6. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Reuel Smith & Mohammad Modarres & Enrique López Droguett, 2018. "A recursive Bayesian approach to small fatigue crack propagation and detection modeling," Journal of Risk and Reliability, , vol. 232(6), pages 738-753, December.
    8. Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.
    9. Dann, Markus R. & Dann, Christoph, 2017. "Automated matching of pipeline corrosion features from in-line inspection data," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 40-50.
    10. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Kristin McCullough & Tatiana Dmitrieva & Nader Ebrahimi, 2022. "New approximate Bayesian computation algorithm for censored data," Computational Statistics, Springer, vol. 37(3), pages 1369-1397, July.
    12. Qin, H. & Zhou, W. & Zhang, S., 2015. "Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 334-342.
    13. Saralees Nadarajah & Xiang Jia, 2017. "Estimation of $$P(Y > X)$$ P ( Y > X ) for the Weibull distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1762-1774, November.
    14. Renyan Jiang, 2022. "A novel parameter estimation method for the Weibull distribution on heavily censored data," Journal of Risk and Reliability, , vol. 236(2), pages 307-316, April.
    15. Dann, Markus R. & Maes, Marc A., 2018. "Stochastic corrosion growth modeling for pipelines using mass inspection data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 245-254.
    16. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    17. Kaushik Chatterjee & Mohammad Modarres, 2013. "A probabilistic approach for estimating defect size and density considering detection uncertainties and measurement errors," Journal of Risk and Reliability, , vol. 227(1), pages 28-40, February.
    18. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui, 2023. "Dynamic Bayesian network model to study under-deposit corrosion," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Sun, Xuxue & Mraied, Hesham & Cai, Wenjun & Zhang, Qiong & Liang, Guoyuan & Li, Mingyang, 2018. "Bayesian latent degradation performance modeling and quantification of corroding aluminum alloys," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 84-96.
    20. Guilin Zhang & Fei Xie & Dan Wang, 2024. "Reliability assessment method for tank bottom plates based on hierarchical Bayesian corrosion growth model," Journal of Risk and Reliability, , vol. 238(1), pages 112-121, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:161:y:2017:i:c:p:87-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.