IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics0951832021000673.html
   My bibliography  Save this article

Remaining Useful Life Prediction and Optimal Maintenance Time Determination for a Single Unit Using Isotonic Regression and Gamma Process Model

Author

Listed:
  • Wang, Han
  • Liao, Haitao
  • Ma, Xiaobing
  • Bao, Rui

Abstract

Degradation-based remaining useful life (RUL) prediction plays an important role in ensuring the reliability and safety of rotating machinery components. The accuracy of traditional models and methods is usually affected by the inevitable fluctuations in degradation signals. This paper proposes a dynamic RUL prediction and optimal maintenance time (OMT) determination approach using a Gamma process model. This approach can significantly reduce the effects of random fluctuations on the accuracy of RUL prediction, and facilitate the implementation of real-time condition-based maintenance. In particular, an isotonic regression based data preprocessing method, called pool-adjacent-violators algorithm, is first presented to smooth random fluctuations in degradation signals. Then, health stage identification is conducted by measuring the degradation gradient within a sliding window to characterize the degradation trend and identify the jump points. A Bayesian algorithm and a maximum likelihood estimation method are jointly utilized to update the model parameters and further predict the component's RUL. By considering both maintenance cost and failure risk of the component, an OMT determination method based on RUL prediction result is developed. A case study on rolling element bearings illustrates the superiority and effectiveness of the proposed approach in both RUL prediction and maintenance decision making.

Suggested Citation

  • Wang, Han & Liao, Haitao & Ma, Xiaobing & Bao, Rui, 2021. "Remaining Useful Life Prediction and Optimal Maintenance Time Determination for a Single Unit Using Isotonic Regression and Gamma Process Model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000673
    DOI: 10.1016/j.ress.2021.107504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    2. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    3. Haitao Liao & Zhigang Tian, 2013. "A framework for predicting the remaining useful life of a single unit under time-varying operating conditions," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 964-980.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Zhenyu Yin & Yan Fan & Pingxin Wang & Jianjun Chen, 2023. "Parallel Selector for Feature Reduction," Mathematics, MDPI, vol. 11(9), pages 1-33, April.
    3. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Yu, Wennian & Shao, Yimin & Xu, Jin & Mechefske, Chris, 2022. "An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Si, Xiao-Sheng & Li, Tianmei & Zhang, Jianxun & Lei, Yaguo, 2022. "Nonlinear degradation modeling and prognostics: A Box-Cox transformation perspective," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Nguyen, Hung & Abdel-Mottaleb, Noha & Uddin, Shihab & Zhang, Qiong & Lu, Qing & Zhang, He & Li, Mingyang, 2022. "Joint maintenance planning of deteriorating co-located road and water infrastructures with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. He, Xinxin & Wang, Zhijian & Li, Yanfeng & Khazhina, Svetlana & Du, Wenhua & Wang, Junyuan & Wang, Wenzhao, 2022. "Joint decision-making of parallel machine scheduling restricted in job-machine release time and preventive maintenance with remaining useful life constraints," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Sun, Quan & Peng, Fei & Yu, Xianghai & Li, Hongsheng, 2023. "Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Feng, Tingting & Li, Shichao & Guo, Liang & Gao, Hongli & Chen, Tao & Yu, Yaoxiang, 2023. "A degradation-shock dependent competing failure processes based method for remaining useful life prediction of drill bit considering time-shifting sudden failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    12. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Sánchez, Luciano & Costa, Nahuel & Couso, Inés, 2023. "Simplified models of remaining useful life based on stochastic orderings," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Jiang, Shan & Jia, Xujie, 2024. "Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    20. Jiang, Weixin & Cui, Lirong & Liang, Xiaojun, 2024. "Optimal maintenance policies for three-unit parallel production systems considering yields," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    21. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    22. Li, Xilin & Teng, Wei & Peng, Dikang & Ma, Tao & Wu, Xin & Liu, Yibing, 2023. "Feature fusion model based health indicator construction and self-constraint state-space estimator for remaining useful life prediction of bearings in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    3. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    4. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    5. Ma, Xiaoyang & Liu, Bin & Yang, Li & Peng, Rui & Zhang, Xiaodong, 2020. "Reliability analysis and condition-based maintenance optimization for a warm standby cooling system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    7. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    8. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    10. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    12. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    14. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    15. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
    16. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    17. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    18. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    20. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.