IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003350.html
   My bibliography  Save this article

Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models

Author

Listed:
  • Dai, Xinliang
  • Qu, Sheng
  • Sui, Hao
  • Wu, Pingbo

Abstract

Wear of wheel profiles is a common degradation process that significantly impacts the reliability of wheelsets. In this study, a conditional bivariate Gamma process is constructed to characterize wheel wear, and hierarchical Bayesian models are employed to identify the differences in wear between each vehicle within a train. Before computation, the field data are modified by isotonic regression and monotone cubic Hermite interpolants. Due to the failure modes involving flange thickness and wheel diameter difference, the distributions of first-passage times are calculated using an analytical approach and kernel density estimation, respectively. The proposed model is validated with a real-world case study of a train consisting of eight vehicles. The results indicate that the laws of wear vary throughout the train, besides left and right wheels. Based on the results, conclusions can be drawn that the first and last vehicles in a train have higher mean wear rates than others, and that different vehicles have different levels of reliability during different stages; the early failure rates are close to zero, but they rapidly increase in the late stage.

Suggested Citation

  • Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003350
    DOI: 10.1016/j.ress.2022.108710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    3. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Wang, Han & Liao, Haitao & Ma, Xiaobing & Bao, Rui, 2021. "Remaining Useful Life Prediction and Optimal Maintenance Time Determination for a Single Unit Using Isotonic Regression and Gamma Process Model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Zhexiang Chi & Taotao Zhou & Simin Huang & Yan-Fu Li, 2020. "A data-driven approach for the health prognosis of high-speed train wheels," Journal of Risk and Reliability, , vol. 234(6), pages 735-747, December.
    6. Kelly, Dana L. & Smith, Curtis L., 2009. "Bayesian inference in probabilistic risk assessment—The current state of the art," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 628-643.
    7. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
    8. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    9. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Julio C. Ferreira & Marta A. Freitas & Enrico A. Colosimo, 2012. "Degradation data analysis for samples under unequal operating conditions: a case study on train wheels," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2721-2739, August.
    11. Chi, Zhexiang & Chen, Ruoran & Huang, Simin & Li, Yan-Fu & Zhou, Bin & Zhang, Wenjuan, 2020. "Multi-State System Modeling and Reliability Assessment for Groups of High-speed Train Wheels," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Men, Tianli & Li, Yan-Fu & Ji, Yujun & Zhang, Xinliang & Liu, Pengfei, 2022. "Health assessment of high-speed train wheels based on group-profile data," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Saberzadeh, Zahra & Razmkhah, Mostafa, 2022. "Reliability of degrading complex systems with two dependent components per element," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barui, Sandip & Mitra, Debanjan & Balakrishnan, Narayanaswamy, 2024. "Flexible modelling of a bivariate degradation process with a shared frailty and an application to fatigue crack data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    2. Yuanchen Zeng & Dongli Song & Weihua Zhang & Bin Zhou & Mingyuan Xie & Xiaoyue Qi, 2021. "Risk assessment of wheel polygonization on high-speed trains based on Bayesian networks," Journal of Risk and Reliability, , vol. 235(2), pages 182-192, April.
    3. Shangguan, Anqi & Xie, Guo & Fei, Rong & Mu, Lingxia & Hei, Xinhong, 2023. "Train wheel degradation generation and prediction based on the time series generation adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Farshad BahooToroody & Saeed Khalaj & Leonardo Leoni & Filippo De Carlo & Gianpaolo Di Bona & Antonio Forcina, 2021. "Reliability Estimation of Reinforced Slopes to Prioritize Maintenance Actions," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    8. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. BahooToroody, Ahmad & Abaei, Mohammad Mahdi & Banda, Osiris Valdez & Kujala, Pentti & De Carlo, Filippo & Abbassi, Rouzbeh, 2022. "Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. Abaei, Mohammad Mahdi & Hekkenberg, Robert & BahooToroody, Ahmad, 2021. "A multinomial process tree for reliability assessment of machinery in autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Wu, Xin & Huang, Tingting & Liu, Jie, 2023. "Common stochastic effects induced multivariate degradation process with temporal dependency in degradation characteristic and unit dimensions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
    15. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    16. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    18. Zheng, Xiaoyu & Yamaguchi, Akira & Takata, Takashi, 2013. "α-Decomposition for estimating parameters in common cause failure modeling based on causal inference," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 20-27.
    19. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    20. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.