IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v232y2023ics0951832022006809.html
   My bibliography  Save this article

Fragility-based system performance assessment of critical power infrastructure

Author

Listed:
  • Zhang, Jintao
  • Bagtzoglou, Yiannis
  • Zhu, Jin
  • Li, Baikun
  • Zhang, Wei

Abstract

Climate change and population growth require the development and operations of critical power infrastructure systems to meet the energy demand. Performance assessment of the power infrastructure usually focuses primarily on the thermodynamic analysis calculating the energy output and system efficiency. However, the energy output from the thermodynamic analysis under normal operation could not fully represent the infrastructure behavior due to the neglect of the component reliability in the energy generation system. There is a lack of consideration of the energy delivery system and its fragility with respect to external meteorological parameters (e.g., wind). In this study, the fragility of the energy-delivery system concerning wind speed is modeled and integrated to assess critical power infrastructure performance. The reliability consideration of the energy generation system is included based on the state space diagram and the frequency-balance method. The fragility of the energy-delivery system is used to derive a system reliability index for the system which is the probability that end-users will receive the energy. Besides, sensitivity analysis is conducted to investigate the influence of the important decision variables on the system performance. The study employs a small-scale power infrastructure system at the University of Connecticut as an example to demonstrate the feasibility of the performance assessment framework. The system is composed of a cogeneration plant and energy distribution systems. The results from the case study prove that the decision variables have considerable nonlinear impacts on the system performance. With the integration of fragility, the proposed approach could estimate the energy received by consumers from the generation site.

Suggested Citation

  • Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006809
    DOI: 10.1016/j.ress.2022.109065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koeppel, Gaudenz & Andersson, Göran, 2009. "Reliability modeling of multi-carrier energy systems," Energy, Elsevier, vol. 34(3), pages 235-244.
    2. Dashti, Reza & Yousefi, Shaghayegh, 2013. "Reliability based asset assessment in electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 129-136.
    3. Eti, M. C. & Ogaji, S. O. T. & Probert, S. D., 2004. "Reliability of the Afam electric power generating station, Nigeria," Applied Energy, Elsevier, vol. 77(3), pages 309-315, March.
    4. Zare, V., 2016. "Exergoeconomic analysis with reliability and availability considerations of a nuclear energy-based combined cycle power plant," Energy, Elsevier, vol. 96(C), pages 187-196.
    5. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    8. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    9. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    11. He, Xian & Cha, Eun Jeong, 2018. "Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 162-175.
    12. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    13. Sanjay, & Prasad, Bishwa N., 2013. "Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant," Energy, Elsevier, vol. 59(C), pages 277-284.
    14. Arriola-Medellín, Alejandro & Manzanares-Papayanopoulos, Emilio & Romo-Millares, César, 2014. "Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis," Energy, Elsevier, vol. 72(C), pages 643-651.
    15. Abdul Rahman, Fariz & Varuttamaseni, Athi & Kintner-Meyer, Michael & Lee, John C., 2013. "Application of fault tree analysis for customer reliability assessment of a distribution power system," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 76-85.
    16. Seth D. Guikema & Steven M. Quiring & Seung‐Ryong Han, 2010. "Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1744-1752, December.
    17. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Zare, V., 2016. "Exergoeconomic analysis with reliability and availability considerations of a nuclear energy-based combined cycle power plant," Energy, Elsevier, vol. 96(C), pages 187-196.
    7. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    9. Jalilpoor, Kamran & Oshnoei, Arman & Mohammadi-Ivatloo, Behnam & Anvari-Moghaddam, Amjad, 2022. "Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Paul, Shuva & Poudyal, Abodh & Poudel, Shiva & Dubey, Anamika & Wang, Zhaoyu, 2024. "Resilience assessment and planning in power distribution systems: Past and future considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    15. Ghaffarpour, Reza & Mozafari, Babak & Ranjbar, Ali Mohammad & Torabi, Taghi, 2018. "Resilience oriented water and energy hub scheduling considering maintenance constraint," Energy, Elsevier, vol. 158(C), pages 1092-1104.
    16. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Hou, Guangyang & Muraleetharan, Kanthasamy K. & Panchalogaranjan, Vinushika & Moses, Paul & Javid, Amir & Al-Dakheeli, Hussein & Bulut, Rifat & Campos, Richard & Harvey, P. Scott & Miller, Gerald & Bo, 2023. "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.