IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p644-d206652.html
   My bibliography  Save this article

Planning of a Resilient Underground Distribution Network Using Georeferenced Data

Author

Listed:
  • Alex Valenzuela

    (Electrical Engineering, Universidad Poliécnica Salesiana, Quito EC170146, Ecuador
    These authors contributed equally to this work.)

  • Esteban Inga

    (Electrical Engineering, Universidad Poliécnica Salesiana, Quito EC170146, Ecuador
    These authors contributed equally to this work.)

  • Silvio Simani

    (Department of Engineering, University of Ferrara, 44121 Ferrara, Italy)

Abstract

This study describes a practical methodology for a resilient planning and routing of power distribution networks considering real scenarios based on georeferenced data. Customers’ demand and their location are the basis for distribution transformer allocation considering the minimal construction costs and reduction of utility’s budget. MST (Minimum Spanning Tree) techniques are implemented to determine the optimal location of distribution transformers and Medium voltage network routing. Additionally, the allocation of tie points is determined to minimise the total load shedding when unusual and extreme events are faced by the distribution grid, improving reliability and resilience reducing downtime during those events. The proposed methodology provides a coverage of 100%, supplying electricity to the totality of customers within statutory limits during normal and unusual conditions.

Suggested Citation

  • Alex Valenzuela & Esteban Inga & Silvio Simani, 2019. "Planning of a Resilient Underground Distribution Network Using Georeferenced Data," Energies, MDPI, vol. 12(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:644-:d:206652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mousavizadeh, Saeed & Haghifam, Mahmoud-Reza & Shariatkhah, Mohammad-Hossein, 2018. "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources," Applied Energy, Elsevier, vol. 211(C), pages 443-460.
    2. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edy Quintana & Esteban Inga, 2022. "Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning Constraints," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Alex Valenzuela & Iván Montalvo & Esteban Inga, 2019. "A Decision-Making Tool for Electric Distribution Network Planning Based on Heuristics and Georeferenced Data," Energies, MDPI, vol. 12(21), pages 1-18, October.
    4. Alex Valenzuela & Silvio Simani & Esteban Inga, 2021. "Automatic Overcurrent Protection Coordination after Distribution Network Reconfiguration Based on Peer-To-Peer Communication," Energies, MDPI, vol. 14(11), pages 1-22, June.
    5. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    6. Alex Guamán & Alex Valenzuela, 2021. "Distribution Network Reconfiguration Applied to Multiple Faulty Branches Based on Spanning Tree and Genetic Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
    7. Ghosh, Puspendu & De, Mala, 2023. "A stochastic investment decision making method for distribution system resilience enhancement considering automation, hardening and distributed energy resources," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Mirshekali, Hamid & Mortensen, Lasse Kappel & Shaker, Hamid Reza, 2024. "Reliability-aware multi-objective approach for predictive asset management: A Danish distribution grid case study," Applied Energy, Elsevier, vol. 358(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qianzhi & Wang, Zhaoyu & Ma, Shanshan & Arif, Anmar, 2021. "Stochastic pre-event preparation for enhancing resilience of distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    8. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    9. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    11. Habibollah Raoufi & Vahid Vahidinasab & Kamyar Mehran, 2020. "Power Systems Resilience Metrics: A Comprehensive Review of Challenges and Outlook," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    12. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    13. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Dikshit, Saransh & Alipour, Alice, 2023. "A moment-matching method for fragility analysis of transmission towers under straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    17. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    19. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:644-:d:206652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.