IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v232y2023ics0951832022006858.html
   My bibliography  Save this article

Resilience of electric grid to extreme wind: Considering local details at national scale

Author

Listed:
  • JasiÅ«nas, Justinas
  • Heikkinen, Tatu
  • Lund, Peter D.
  • Láng-Ritter, Ilona

Abstract

A small number of the strongest windstorms can account for a major share of power interruptions. In addition to large direct costs, such windstorms may shift the strategic direction of the energy system development. Thus, future system planning may benefit from a better understanding of the energy system resilience against the largest historical and historically unprecedented, but meteorologically plausible windstorms. Present analysis tools handling power disruptions tend to focus either on transmission grids or small distribution grids. However, neither focus captures well impacts concentrated on the distribution level over large area that includes high variety of grids and environments. This paper presents a fragility-based power disruption model against windstorms on a national scale with details on the local medium voltage grid. The model integrates synthetically generated power grids and consumption profiles with fragility functions and windstorm severity dependent fixing times. Grids are generated by spatial mapping of the grid component totals for each distribution grid operator onto municipalities and assuming symmetrical grid topologies within the municipalities. The model is applied to reproduce the national lost load profile for year 2011 winter windstorms in Finland. The modeled profile reproduces the historical reference data with a RMSE of 9% of the outage peak.

Suggested Citation

  • JasiÅ«nas, Justinas & Heikkinen, Tatu & Lund, Peter D. & Láng-Ritter, Ilona, 2023. "Resilience of electric grid to extreme wind: Considering local details at national scale," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006858
    DOI: 10.1016/j.ress.2022.109070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    4. Giuditta Pisano & Nayeem Chowdhury & Massimiliano Coppo & Nicola Natale & Giacomo Petretto & Gian Giuseppe Soma & Roberto Turri & Fabrizio Pilo, 2019. "Synthetic Models of Distribution Networks Based on Open Data and Georeferenced Information," Energies, MDPI, vol. 12(23), pages 1-24, November.
    5. Scherb, Anke & Garrè, Luca & Straub, Daniel, 2019. "Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Xue, Jiayue & Mohammadi, Farshad & Li, Xin & Sahraei-Ardakani, Mostafa & Ou, Ge & Pu, Zhaoxia, 2020. "Impact of transmission tower-line interaction to the bulk power system during hurricane," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    8. Väinö Nurmi & Karoliina Pilli-Sihvola & Hilppa Gregow & Adriaan Perrels, 2019. "Overadaptation to Climate Change? The Case of the 2013 Finnish Electricity Market Act," Economics of Disasters and Climate Change, Springer, vol. 3(2), pages 161-190, July.
    9. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Ma, Liyang & Christou, Vasileios & Bocchini, Paolo, 2022. "Framework for probabilistic simulation of power transmission network performance under hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    12. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    13. Fernando E. Postigo Marcos & Carlos Mateo Domingo & Tomás Gómez San Román & Bryan Palmintier & Bri-Mathias Hodge & Venkat Krishnan & Fernando De Cuadra García & Barry Mather, 2017. "A Review of Power Distribution Test Feeders in the United States and the Need for Synthetic Representative Networks," Energies, MDPI, vol. 10(11), pages 1-14, November.
    14. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Puspendu & De, Mala, 2023. "A stochastic investment decision making method for distribution system resilience enhancement considering automation, hardening and distributed energy resources," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Meng, Xiangrui & Tian, Li & Li, Chao & Liu, Juncai, 2024. "Copula-based wind-induced failure prediction of overhead transmission line considering multiple temperature factors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justinas Jasiūnas & Ilona Láng-Ritter & Tatu Heikkinen & Peter D. Lund, 2023. "Electricity Load Lost in the Largest Windstorms—Is the Fragility-Based Model up to the Task?," Energies, MDPI, vol. 16(15), pages 1-23, July.
    2. Bi, Wenzhe & Tian, Li & Li, Chao & Ma, Zhen & Pan, Haiyang, 2023. "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Dikshit, Saransh & Alipour, Alice, 2023. "A moment-matching method for fragility analysis of transmission towers under straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Sang, Maosheng & Ding, Yi & Bao, Minglei & Li, Siying & Ye, Chengjin & Fang, Youtong, 2021. "Resilience-based restoration strategy optimization for interdependent gas and power networks," Applied Energy, Elsevier, vol. 302(C).
    12. Jalilpoor, Kamran & Oshnoei, Arman & Mohammadi-Ivatloo, Behnam & Anvari-Moghaddam, Amjad, 2022. "Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Meng, Xiangrui & Tian, Li & Li, Chao & Liu, Juncai, 2024. "Copula-based wind-induced failure prediction of overhead transmission line considering multiple temperature factors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    19. Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
    20. Otto, Räisänen & Susanne, Suvanto & Jouni, Haapaniemi & Jukka, Lassila, 2023. "Crown snow load outage risk model for overhead lines," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.