IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics0951832018315254.html
   My bibliography  Save this article

Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience

Author

Listed:
  • Argyroudis, Sotirios A.
  • Mitoulis, Stergios Α.
  • Winter, Mike G.
  • Kaynia, Amir M.

Abstract

Vulnerability is a fundamental component of risk and its understanding is important for characterising the reliability of infrastructure assets and systems and for mitigating risks. The vulnerability analysis of infrastructure exposed to natural hazards has become a key area of research due to the critical role that infrastructure plays for society and this topic has been the subject of significant advances from new data and insights following recent disasters. Transport systems, in particular, are highly vulnerable to natural hazards, and the physical damage of transport assets may cause significant disruption and socioeconomic impact. More importantly, infrastructure assets comprise Systems of Assets (SoA), i.e. a combination of interdependent assets exposed not to one, but to multiple hazards, depending on the environment within which these reside. Thus, it is of paramount importance for their reliability and safety to enable fragility analysis of SoA subjected to a sequence of hazards. In this context, and after understanding the absence of a relevant study, the aim of this paper is to review the recent advances on fragility assessment of critical transport infrastructure subject to diverse geotechnical and climatic hazards. The effects of these hazards on the main transport assets are summarised and common damage modes are described. Frequently in practice, individual fragility functions for each transport asset are employed as part of a quantitative risk analysis (QRA) of the infrastructure. A comprehensive review of the available fragility functions is provided for different hazards. Engineering advances in the development of numerical fragility functions for individual assets are discussed including soil-structure interaction, deterioration, and multiple hazard effects. The concept of SoA in diverse ecosystems is introduced, where infrastructure is classified based on (i) the road capacity and speed limits and (ii) the geomorphological and topographical conditions. A methodological framework for the development of numerical fragility functions of SoA under multiple hazards is proposed and demonstrated. The paper concludes by detailing the opportunities for future developments in the fragility analysis of transport SoA under multiple hazards, which is of paramount importance in decision-making processes around adaptation, mitigation, and recovery planning in respect of geotechnical and climatic hazards.

Suggested Citation

  • Argyroudis, Sotirios A. & Mitoulis, Stergios Α. & Winter, Mike G. & Kaynia, Amir M., 2019. "Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018315254
    DOI: 10.1016/j.ress.2019.106567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018315254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    2. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    3. Schweikert, Amy & Chinowsky, Paul & Kwiatkowski, Kyle & Espinet, Xavier, 2014. "The infrastructure planning support system: Analyzing the impact of climate change on road infrastructure and development," Transport Policy, Elsevier, vol. 35(C), pages 146-153.
    4. Lam, Juan Carlos & Adey, Bryan T. & Heitzler, Magnus & Hackl, Jürgen & Gehl, Pierre & van Erp, Noel & D'Ayala, Dina & van Gelder, Pieter & Hurni, Lorenz, 2018. "Stress tests for a road network using fragility functions and functional capacity loss functions," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 78-93.
    5. Bilal M. Ayyub, 2014. "Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 340-355, February.
    6. Jacopo Selva & Sotiris Argyroudis & Kyriazis Pitilakis, 2013. "Impact on loss/risk assessments of inter-model variability in vulnerability analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 723-746, June.
    7. A. Reder & M. Iturbide & S. Herrera & G. Rianna & P. Mercogliano & J. M. Gutiérrez, 2018. "Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe—the INTACT framework," Climatic Change, Springer, vol. 148(1), pages 123-138, May.
    8. Olga Petrucci & Giovanni Gullà, 2010. "A simplified method for assessing landslide damage indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 539-560, March.
    9. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    10. Espinet, Xavier & Schweikert, Amy & van den Heever, Nicola & Chinowsky, Paul, 2016. "Planning resilient roads for the future environment and climate change: Quantifying the vulnerability of the primary transport infrastructure system in Mexico," Transport Policy, Elsevier, vol. 50(C), pages 78-86.
    11. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    12. Ghosh, Jayadipta & Sood, Piyush, 2016. "Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 197-218.
    13. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chahrour, Nour & Nasr, Mohamad & Tacnet, Jean-Marc & Bérenguer, Christophe, 2021. "Deterioration modeling and maintenance assessment using physics-informed stochastic Petri nets: Application to torrent protection structures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Pablo Cartes & Alondra Chamorro & Tomás Echaveguren, 2021. "Seismic risk evaluation of highway tunnel groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2101-2121, September.
    3. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    4. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Guoqing Qian & Chuansong Duanmu & Nisar Ali & Adnan Khan & Sumeet Malik & Yong Yang & Muhammad Bilal, 2022. "Hazardous wastes, adverse impacts, and management strategies: a way forward to environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9731-9756, August.
    6. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Zhang, Zhenyu & Ji, Tingting & Wei, Hsi-Hsien, 2022. "Dynamic emergency inspection routing and restoration scheduling to enhance the post-earthquake resilience of a highway–bridge network," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Azucena Román-de la Sancha & Rodolfo Silva, 2020. "Multivariable Analysis of Transport Network Seismic Performance: Mexico City," Sustainability, MDPI, vol. 12(22), pages 1-40, November.
    11. Abdel-Mooty, Moustafa Naiem & Sasidharan, Manu & Herrera, Manuel & Parlikad, Ajith Kumar & Schooling, Jennifer & El-Dakhakhni, Wael & Coulibaly, Paulin, 2024. "Strategic assessment of bridge susceptibility to scour," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Konstantinos Gkoumas & Michalis Christou, 2020. "A Triple-Helix Approach for the Assessment of Hyperloop Potential in Europe," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    13. Argyroudis, Sotirios A. & Mitoulis, Stergios Aristoteles, 2021. "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Taghizadeh, Mehdi & Mahsuli, Mojtaba & Poorzahedy, Hossain, 2023. "Probabilistic framework for evaluating the seismic resilience of transportation systems during emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Sotirios A. Argyroudis & Stavroula Fotopoulou & Stella Karafagka & Kyriazis Pitilakis & Jacopo Selva & Ernesto Salzano & Anna Basco & Helen Crowley & Daniela Rodrigues & José P. Matos & Anton J. Schle, 2020. "A risk-based multi-level stress test methodology: application to six critical non-nuclear infrastructures in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 595-633, January.
    17. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega, Emilio & Martín, Belén & Aparicio, Ángel, 2020. "Identification of critical sections of the Spanish transport system due to climate scenarios," Journal of Transport Geography, Elsevier, vol. 84(C).
    2. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    4. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    5. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    6. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    8. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    9. Thomas J. Wilbanks & Rae Zimmerman & Susan Julius & Paul Kirshen & Joel B. Smith & Richard Moss & William Solecki & Matthias Ruth & Stephen Conrad & Steven J. Fernandez & Michael S. Matthews & Michael, 2020. "Toward indicators of the performance of US infrastructures under climate change risks," Climatic Change, Springer, vol. 163(4), pages 1795-1813, December.
    10. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.
    11. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Argyroudis, Sotirios A. & Mitoulis, Stergios Aristoteles, 2021. "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    14. Seppänen, Hannes & Luokkala, Pekka & Zhang, Zhe & Torkki, Paulus & Virrantaus, Kirsi, 2018. "Critical infrastructure vulnerability—A method for identifying the infrastructure service failure interdependencies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 25-38.
    15. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    16. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    17. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    18. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    19. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Yaning Qiao & Andrew R. Dawson & Tony Parry & Gerardo Flintsch & Wenshun Wang, 2020. "Flexible Pavements and Climate Change: A Comprehensive Review and Implications," Sustainability, MDPI, vol. 12(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018315254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.