IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01147778.html
   My bibliography  Save this paper

On an asymmetric extension of multivariate Archimedean copulas based on quadratic form

Author

Listed:
  • Elena Di Bernardino

    (CEDRIC - Centre d'études et de recherche en informatique et communications - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - CNAM - Conservatoire National des Arts et Métiers [CNAM])

  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

An important topic in Quantitative Risk Management concerns the modeling of dependence among risk sources and in this regard Archimedean copulas appear to be very useful. However, they exhibit symmetry, which is not always consistent with patterns observed in real world data. We investigate extensions of the Archimedean copula family that make it possible to deal with asymmetry. Our extension is based on the observation that when applied to the copula the inverse function of the generator of an Archimedean copula can be expressed as a linear form of generator inverses. We propose to add a distortion term to this linear part, which leads to asymmetric copulas. Parameters of this new class of copulas are grouped within a matrix, thus facilitating some usual applications as level curve determination or estimation. Some choices such as sub-model stability help associating each parameter to one bivariate projection of the copula. We also give some admissibility conditions for the considered copulas. We propose different examples as some natural multivariate extensions of Farlie-Gumbel-Morgenstern or Gumbel-Barnett.

Suggested Citation

  • Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Post-Print hal-01147778, HAL.
  • Handle: RePEc:hal:journl:hal-01147778
    DOI: 10.1515/demo-2016-0019
    Note: View the original document on HAL open archive server: https://hal.science/hal-01147778v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01147778v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2016-0019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    2. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    3. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodri­guez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2008. "On the construction of copulas and quasi-copulas with given diagonal sections," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 473-483, April.
    4. Di Bernardino, Elena & Rullière, Didier, 2013. "Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 190-205.
    5. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    6. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    7. Valdez, Emiliano A., 2009. "On the Distortion of a Copula and its Margins," MPRA Paper 20524, University Library of Munich, Germany.
    8. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    9. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    10. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    11. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    12. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    13. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    14. Patricia Mariela Morillas, 2005. "A method to obtain new copulas from a given one," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(2), pages 169-184, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Šeliga Adam & Kauers Manuel & Saminger-Platz Susanne & Mesiar Radko & Kolesárová Anna & Klement Erich Peter, 2021. "Polynomial bivariate copulas of degree five: characterization and some particular inequalities," Dependence Modeling, De Gruyter, vol. 9(1), pages 13-42, January.
    2. Nabil Kazi-Tani & Didier Rullière, 2017. "On a construction of multivariate distributions given some multidimensional marginals," Working Papers hal-01575169, HAL.
    3. Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    4. Nabil Kazi-Tani & Didier Rullière, 2019. "On a construction of multivariate distributions given some multidimensional marginals," Post-Print hal-01575169, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Working Papers hal-01147778, HAL.
    2. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    4. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    5. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    6. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    7. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
    8. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    9. Fabrizio Durante & Marius Hofert & Matthias Scherer, 2010. "Multivariate Hierarchical Copulas with Shocks," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 681-694, December.
    10. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    11. Durante Fabrizio & Fernández-Sánchez Juan & Trutschnig Wolfgang, 2014. "Solution to an open problem about a transformation on the space of copulas," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, November.
    12. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    13. Enrico Bernardi & Silvia Romagnoli, 2016. "Distorted Copula-Based Probability Distribution of a Counting Hierarchical Variable: A Credit Risk Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 285-310, March.
    14. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    15. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    16. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    17. Hofert, Marius & Vrins, Frédéric, 2013. "Sibuya copulas," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 318-337.
    18. Shaomin Wu & Hongyan Dui & Linmin Hu, 2024. "Construction of copulas for bivariate failure rates," Annals of Operations Research, Springer, vol. 341(2), pages 1177-1189, October.
    19. Włodzimierz Wysocki, 2015. "Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 442-459, December.

    More about this item

    Keywords

    Archimedean copulas; transformations of Archimedean copulas;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01147778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.