IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.11088.html
   My bibliography  Save this paper

Time series copula models using d-vines and v-transforms

Author

Listed:
  • Martin Bladt
  • Alexander J. McNeil

Abstract

An approach to modelling volatile financial return series using stationary d-vine copula processes combined with Lebesgue-measure-preserving transformations known as v-transforms is proposed. By developing a method of stochastically inverting v-transforms, models are constructed that can describe both stochastic volatility in the magnitude of price movements and serial correlation in their directions. In combination with parametric marginal distributions it is shown that these models can rival and sometimes outperform well-known models in the extended GARCH family.

Suggested Citation

  • Martin Bladt & Alexander J. McNeil, 2020. "Time series copula models using d-vines and v-transforms," Papers 2006.11088, arXiv.org, revised Jul 2021.
  • Handle: RePEc:arx:papers:2006.11088
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.11088
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Ibragimov, Rustam, 2009. "Copula-Based Characterizations For Higher Order Markov Processes," Econometric Theory, Cambridge University Press, vol. 25(3), pages 819-846, June.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Dingfang Li & Yifan Gui & Yifan Li & Lihua Xiong, 2018. "A method for constructing asymmetric pair-copula and its application," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(17), pages 4202-4214, September.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    12. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    13. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    14. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    15. Smith, Michael & Min, Aleksey & Almeida, Carlos & Czado, Claudia, 2010. "Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1467-1479.
    16. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    17. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    18. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    19. Yanqin Fan & Andrew J. Patton, 2014. "Copulas in Econometrics," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 179-200, August.
    20. Eike Christian Brechmann & Claudia Czado, 2015. "COPAR—multivariate time series modeling using the copula autoregressive model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 495-514, July.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Bladt & Alexander J. McNeil, 2021. "Time series models with infinite-order partial copula dependence," Papers 2107.00960, arXiv.org.
    2. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    3. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    4. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    5. Kasa, Siva Rajesh & Rajan, Vaibhav, 2022. "Improved Inference of Gaussian Mixture Copula Model for Clustering and Reproducibility Analysis using Automatic Differentiation," Econometrics and Statistics, Elsevier, vol. 22(C), pages 67-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    2. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. Alexander J. McNeil, 2021. "Modelling Volatile Time Series with V-Transforms and Copulas," Risks, MDPI, vol. 9(1), pages 1-26, January.
    5. Martin Bladt & Alexander J. McNeil, 2021. "Time series models with infinite-order partial copula dependence," Papers 2107.00960, arXiv.org.
    6. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    7. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    8. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    9. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    10. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    11. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    12. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    13. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    14. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    15. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
    16. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    17. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    18. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    19. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    20. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.11088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.