IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v43y2011i9p633-646.html
   My bibliography  Save this article

Heuristics for component assignment problems based on the Birnbaum importance

Author

Listed:
  • Qingzhu Yao
  • Xiaoyan Zhu
  • Way Kuo

Abstract

This article considers the Component Assignment Problem (CAP), which concerns the problem of finding the optimal arrangement of n available components in the n positions of a system so that the system reliability is maximized. The Birnbaum Importance (BI) is a well-known measure that evaluates the relative contributions of components to system reliability. The ordering of BI values of components is a good indicator for the solution of the CAP and has been used to design heuristics for the CAP. This article proposes five new BI-based heuristics and presents their corresponding properties. Based on the numerical testing of the BI-based heuristics, a two-stage approach is proposed to solve the CAP with each stage using different BI-based heuristics. Comprehensive numerical experiments involving both small and large systems are used to evaluate the two-stage approach and to benchmark it against the GAMS/CoinBonmin solver and a randomization method. The numerical results show that the two-stage approach is much more efficient and is able to generate solutions of higher quality than the GAMS/CoinBonmin solver and the randomization method.

Suggested Citation

  • Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2011. "Heuristics for component assignment problems based on the Birnbaum importance," IISE Transactions, Taylor & Francis Journals, vol. 43(9), pages 633-646.
  • Handle: RePEc:taf:uiiexx:v:43:y:2011:i:9:p:633-646
    DOI: 10.1080/0740817X.2010.532856
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2010.532856
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2010.532856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Zhiqiang & Si, Shubin & Sun, Shudong & Li, Caitao, 2016. "Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 248-258.
    2. Fu, Yuqiang & Zhu, Xiaoyan & Ma, Xiaoyang, 2020. "Optimum component reallocation and system replacement maintenance for a used system with increasing minimal repair cost," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Qiu, Siqi & Sallak, Mohamed & Schön, Walter & Ming, Henry X.G., 2018. "Extended LK heuristics for the optimization of linear consecutive-k-out-of-n: F systems considering parametric uncertainty and model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 51-61.
    4. Qiu, Siqi & Ming, Xinguo & Sallak, Mohamed & Lu, Jialiang, 2022. "A Birnbaum importance-based two-stage approach for two-type component assignment problems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    6. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    7. Fu, Yuqiang & Yuan, Tao & Zhu, Xiaoyan, 2019. "Importance-measure based methods for component reassignment problem of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. Zhu, Xiaoyan & Hao, Yaqian, 2021. "Component rearrangement and system replacement for a system with stochastic degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Liu, Mingli & Wang, Dan & Si, Shubin, 2023. "Mixed reliability importance-based solving algorithm design for the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Liu, Mingli & Wang, Dan & Si, Shubin, 2024. "Solving algorithm design for the cost minimization reliability optimization model driven by a novel cost-based importance measure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Qiu, Siqi & Ming, Xinguo, 2020. "An extended Birnbaum importance-based two-stage heuristic for component assignment problems under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2014. "Importance analysis for reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 72-80.
    13. Xiaoyan Zhu & Mahmoud Boushaba, 2017. "A linear weighted system for non-homogeneous Markov-dependent components," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 722-736, July.
    14. Ma, Chenyang & Wang, Qiyu & Cai, Zhiqiang & Si, Shubin & Zhao, Jiangbin, 2021. "Component reassignment for reliability optimization of reconfigurable systems considering component degradation," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Xiaoyan Zhu & Mahmoud Boushaba & Abdelmoumene Boulahia & Xian Zhao, 2019. "A linear m-consecutive-k-out-of-n system with sparse d of non-homogeneous Markov-dependent components," Journal of Risk and Reliability, , vol. 233(3), pages 328-337, June.
    16. Wang, Dan & Si, Shubin & Cai, Zhiqiang & Zhao, Jiangbin, 2021. "Reliability optimization of linear consecutive-k-out-of-n: F systems driven by reconfigurable importance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Fu, Yuqiang & Zhu, Xiaoyan, 2023. "A joint age-based system replacement and component reallocation maintenance policy: Optimization, analysis and resilience," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
    19. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.
    20. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:43:y:2011:i:9:p:633-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.