IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v180y2018icp290-301.html
   My bibliography  Save this article

Consequence-based framework for buried infrastructure systems: A Bayesian belief network model

Author

Listed:
  • Kabir, Golam
  • Balek, Ngandu Balekelayi Celestin
  • Tesfamariam, Solomon

Abstract

The failure of municipal buried infrastructures (potable water supply, wastewater systems, and stormwater systems) may cause crucial consequences to the environment, society, health, and economy. The buried infrastructure management has transformed from reactive to the preventive action plan. In this study, a Bayesian belief network (BBN) based buried infrastructure consequence model is developed to assess the consequence index and to prioritize the buried infrastructures for maintenance/ rehabilitation/ replacement. The causal relationships between different parameters are constructed based on published literature and expert knowledge. The proposed model can provide information at pipe level by estimating the health & safety impact, environmental impact, social impact, and economical & organizational impact due to failure. The proposed model is also capable of highlighting the most sensitive and vulnerable pipes within the network. The applicability of the proposed model is demonstrated on the wastewater collection network of the City of Vernon, BC. Results indicate that proposed BBN-based consequence model can explicitly quantify uncertainties and handle the nonlinear and sophisticated relationships between several factors.

Suggested Citation

  • Kabir, Golam & Balek, Ngandu Balekelayi Celestin & Tesfamariam, Solomon, 2018. "Consequence-based framework for buried infrastructure systems: A Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 290-301.
  • Handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:290-301
    DOI: 10.1016/j.ress.2018.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017314527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Cleary & Mahesh Prakash & Stuart Mead & Vincent Lemiale & Geoff Robinson & Fanghong Ye & Sida Ouyang & Xinming Tang, 2015. "A scenario-based risk framework for determining consequences of different failure modes of earth dams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1489-1530, January.
    2. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    3. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    4. Kabir, Golam & Tesfamariam, Solomon & Francisque, Alex & Sadiq, Rehan, 2015. "Evaluating risk of water mains failure using a Bayesian belief network model," European Journal of Operational Research, Elsevier, vol. 240(1), pages 220-234.
    5. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    6. Kleemann, Janina & Celio, Enrico & Fürst, Christine, 2017. "Validation approaches of an expert-based Bayesian Belief Network in Northern Ghana, West Africa," Ecological Modelling, Elsevier, vol. 365(C), pages 10-29.
    7. Lianfa Li & Jinfeng Wang & Hareton Leung & Sisi Zhao, 2012. "A Bayesian Method to Mine Spatial Data Sets to Evaluate the Vulnerability of Human Beings to Catastrophic Risk," Risk Analysis, John Wiley & Sons, vol. 32(6), pages 1072-1092, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Rabbi & Syed Mithun Ali & Golam Kabir & Zuhayer Mahtab & Sanjoy Kumar Paul, 2020. "Green Supply Chain Performance Prediction Using a Bayesian Belief Network," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    2. Jeonghun Lee & Chan Young Park & Seungwon Baek & Seung H. Han & Sungmin Yun, 2021. "Risk-Based Prioritization of Sewer Pipe Inspection from Infrastructure Asset Management Perspective," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    3. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Iannacone, Leandro & Sharma, Neetesh & Tabandeh, Armin & Gardoni, Paolo, 2022. "Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Yang, Zhuyu & Barroca, Bruno & Laffréchine, Katia & Weppe, Alexandre & Bony-Dandrieux, Aurélia & Daclin, Nicolas, 2023. "A multi-criteria framework for critical infrastructure systems resilience," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    6. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    7. Shen, Yang & Yang, Zhen & Guo, Li & Zhao, Xiaozhe & Duan, Yao, 2024. "Scenario mapping for critical infrastructure failure under typhoon rainfall: A dependency and causality approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Liu, Jin & Zhai, Changhai & Yu, Peng, 2022. "A Probabilistic Framework to Evaluate Seismic Resilience of Hospital Buildings Using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    2. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Kabir, Golam & Tesfamariam, Solomon & Sadiq, Rehan, 2015. "Predicting water main failures using Bayesian model averaging and survival modelling approach," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 498-514.
    4. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    5. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Rongchen Zhu & Xiaofeng Hu & Xin Li & Han Ye & Nan Jia, 2020. "Modeling and Risk Analysis of Chemical Terrorist Attacks: A Bayesian Network Method," IJERPH, MDPI, vol. 17(6), pages 1-23, March.
    7. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Jiansong Wu & Zhuqiang Hu & Jinyue Chen & Zheng Li, 2018. "Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    9. Quintanar-Gago, David A. & Nelson, Pamela F. & Díaz-Sánchez, à ngeles & Boldrick, Michael S., 2021. "Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    11. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    12. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    13. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    14. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    15. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    16. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    17. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    19. Afshin Ghahramani & John McLean Bennett & Aram Ali & Kathryn Reardon-Smith & Glenn Dale & Stirling D. Roberton & Steven Raine, 2021. "A Risk-Based Approach to Mine-Site Rehabilitation: Use of Bayesian Belief Network Modelling to Manage Dispersive Soil and Spoil," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    20. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:290-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.