IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i1d10.1007_s11069-023-06010-0.html
   My bibliography  Save this article

Social media-based urban disaster recovery and resilience analysis of the Henan deluge

Author

Listed:
  • Siqing Shan

    (BeiHang University)

  • Feng Zhao

    (BeiHang University)

Abstract

Measuring disaster resilience from the perspective of long-term recovery ability is important for the planning and construction of urban sustainability, whereas short-term resilient recovery can better reflect a city’s ability to recover quickly after a disaster occurs. This study proposes an analytical framework for urban disaster recovery and resilience based on social media data that can analyze short-term disaster recovery and assess disaster resilience from the perspectives of infrastructure and people’s psychological states. We consider the downpour in Henan, China, in July 2021. The results show that (1) social media data can effectively reflect short-term disaster recovery, (2) disaster resilience can be assessed using social media data combined with rainfall and damage data, and (3) the framework can quantitatively reflect the differences in disaster recovery and resilience across regions. The findings can facilitate better decision-making in disaster emergency management for precise and effective post-disaster reconstruction and psychological intervention, and provide references for cities to improve disaster resilience.

Suggested Citation

  • Siqing Shan & Feng Zhao, 2023. "Social media-based urban disaster recovery and resilience analysis of the Henan deluge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 377-405, August.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06010-0
    DOI: 10.1007/s11069-023-06010-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06010-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06010-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heather McMillen & Lindsay K. Campbell & Erika S. Svendsen & Renae Reynolds, 2016. "Recognizing Stewardship Practices as Indicators of Social Resilience: In Living Memorials and in a Community Garden," Sustainability, MDPI, vol. 8(8), pages 1-26, August.
    2. Lei Zou & Nina S. N. Lam & Heng Cai & Yi Qiang, 2018. "Mining Twitter Data for Improved Understanding of Disaster Resilience," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(5), pages 1422-1441, September.
    3. Robert B. Olshansky & Laurie A. Johnson, 2014. "The Evolution of the Federal Role in Supporting Community Recovery After U.S. Disasters," Journal of the American Planning Association, Taylor & Francis Journals, vol. 80(4), pages 293-304, October.
    4. Jingjing Kong & Chao Zhang & Slobodan P. Simonovic, 2019. "A Two-Stage Restoration Resource Allocation Model for Enhancing the Resilience of Interdependent Infrastructure Systems," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    5. Mike Thelwall & Kevan Buckley & Georgios Paltoglou & Di Cai & Arvid Kappas, 2010. "Sentiment strength detection in short informal text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2544-2558, December.
    6. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    7. Mike Thelwall & Kevan Buckley & Georgios Paltoglou & Di Cai & Arvid Kappas, 2010. "Sentiment strength detection in short informal text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2544-2558, December.
    8. Xiangyang Guan & Cynthia Chen, 2014. "Using social media data to understand and assess disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 837-850, November.
    9. Juan Zhang & Mingyuan Zhang & Gang Li, 2021. "Multi-stage composition of urban resilience and the influence of pre-disaster urban functionality on urban resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 447-473, May.
    10. Sanam K. Aksha & Christopher T. Emrich, 2020. "Benchmarking Community Disaster Resilience in Nepal," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
    11. Hui Xu & Yang Li & Yongtao Tan & Ninghui Deng, 2021. "A Scientometric Review of Urban Disaster Resilience Research," IJERPH, MDPI, vol. 18(7), pages 1-27, April.
    12. Syed Ainuddin & Jayant Routray, 2012. "Earthquake hazards and community resilience in Baluchistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 909-937, September.
    13. Robert Eyre & Flavia De Luca & Filippo Simini, 2020. "Social media usage reveals recovery of small businesses after natural hazard events," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    14. Rachel Samuels & Jiajia Xie & Neda Mohammadi & John E. Taylor, 2022. "Tipping the scales: how geographical scale affects the interpretation of social media behavior in crisis research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 545-564, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahong Feng & Jie Wang & Tianlun Zhang, 2024. "The Impact of Smart City Policies on City Resilience: An Evaluation of 282 Chinese Cities," Sustainability, MDPI, vol. 16(19), pages 1-19, October.
    2. Shubo Cheng & Haoying Li, 2024. "Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model," Sustainability, MDPI, vol. 16(23), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    2. Kübler, Raoul V. & Manke, Kai & Pauwels, Koen, 2025. "I like, I share, I vote: Mapping the dynamic system of political marketing," Journal of Business Research, Elsevier, vol. 186(C).
    3. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    4. Daesik Kim & Chung Joo Chung & Kihong Eom, 2022. "Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    5. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    6. Tadić, Bosiljka & Mitrović Dankulov, Marija & Melnik, Roderick, 2023. "Evolving cycles and self-organised criticality in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
    8. Cohen, Scott & Stienmetz, Jason & Hanna, Paul & Humbracht, Michael & Hopkins, Debbie, 2020. "Shadowcasting tourism knowledge through media: Self-driving sex cars?," Annals of Tourism Research, Elsevier, vol. 85(C).
    9. Zhang, Xuetong & Zhang, Weiguo, 2023. "Information asymmetry, sentiment interactions, and asset price," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    10. Indy Wijngaards & Martijn Burger & Job van Exel, 2019. "The promise of open survey questions—The validation of text-based job satisfaction measures," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-22, December.
    11. Junegak Joung & Ki-Hun Kim & Kwangsoo Kim, 2021. "Data-Driven Approach to Dual Service Failure Monitoring From Negative Online Reviews: Managerial Perspective," SAGE Open, , vol. 11(1), pages 21582440209, January.
    12. Ema Kušen & Mark Strembeck, 2021. "“Evacuate everyone south of that line” Analyzing structural communication patterns during natural disasters," Journal of Computational Social Science, Springer, vol. 4(2), pages 531-565, November.
    13. Wen Zhang & Daniel R. Fesenmaier, 2018. "Assessing emotions in online stories: comparing self-report and text-based approaches," Information Technology & Tourism, Springer, vol. 20(1), pages 83-95, December.
    14. Sejung Park & Jin-A Choi, 2023. "Comparing public responses to apologies: examining crisis communication strategies using network analysis and topic modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3603-3620, August.
    15. Simon Albrecht & Bernhard Lutz & Dirk Neumann, 2020. "The behavior of blockchain ventures on Twitter as a determinant for funding success," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(2), pages 241-257, June.
    16. Jun Lee & Adam Jatowt & Kyoung‐Sook Kim, 2021. "Discovering underlying sensations of human emotions based on social media," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 417-432, April.
    17. Sergey Smetanin, 2022. "Pulse of the Nation: Observable Subjective Well-Being in Russia Inferred from Social Network Odnoklassniki," Mathematics, MDPI, vol. 10(16), pages 1-38, August.
    18. Widerstedt, Barbro & Månsson, Jonas & Rosdahl, Jonatan, 2018. "A warm welcome? Access to advisory services for men and women," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 100-110.
    19. Heleen Brans & Bert Scholtens, 2020. "Under his thumb the effect of president Donald Trump’s Twitter messages on the US stock market," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-11, March.
    20. Nohel Zaman & David M. Goldberg & Richard J. Gruss & Alan S. Abrahams & Siriporn Srisawas & Peter Ractham & Michelle M.H. Şeref, 2022. "Cross-Category Defect Discovery from Online Reviews: Supplementing Sentiment with Category-Specific Semantics," Information Systems Frontiers, Springer, vol. 24(4), pages 1265-1285, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06010-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.