IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i5d10.1007_s13198-021-01131-w.html
   My bibliography  Save this article

Resilience analysis: A formulation to model risk factors on complex system resilience

Author

Listed:
  • Adel Mottahedi

    (Shahrood University of Technology)

  • Farhang Sereshki

    (Shahrood University of Technology)

  • Mohammad Ataei

    (Shahrood University of Technology)

  • Ali Nouri Qarahasanlou

    (Imam Khomeini International University)

  • Abbas Barabadi

    (UiT The Arctic University of Norway)

Abstract

Resilience is about the ability of the system to resist, adapt to, and expeditiously recover from a disruptive event. The first and maybe the crucial step of resilience management is known as resilience analysis. However, there are many obstacles in front of the analyzers to analyze the resilience of systems. One of these obstacles is precise resilience data accessibility. Conventional resilience analysis methods frequently only consider historical data (e.g., time to repair and time to failure). However, to analyze the system resilience more precisely, the effect of the risk factors, which are known as observed and unobserved covariates, should be considered in the collected resilience database. These covariates will lead to the observed and unobserved heterogeneities among the collected database. Ignoring the effect of covariate may lead to erroneous conclusion about the resilience level of the system. Since it is hard to find a homogeneous operating condition, in this study, a formulation is proposed to model the effect of these covariates on complex system resilience. Finally, it is applied to a transportation system of a surface mine.

Suggested Citation

  • Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "Resilience analysis: A formulation to model risk factors on complex system resilience," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 871-883, October.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01131-w
    DOI: 10.1007/s13198-021-01131-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01131-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01131-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cook, Andrew & Delgado, Luis & Tanner, Graham & Cristóbal, Samuel, 2016. "Measuring the cost of resilience," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 38-47.
    2. Roberto G. Gutierrez, 2002. "Parametric frailty and shared frailty survival models," Stata Journal, StataCorp LP, vol. 2(1), pages 22-44, February.
    3. Garmabaki, A.H.S. & Ahmadi, Alireza & Block, Jan & Pham, Hoang & Kumar, Uday, 2016. "A reliability decision framework for multiple repairable units," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 78-88.
    4. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    5. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    6. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "Maintainability analysis considering time-dependent and time-independent covariates," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 210-217.
    7. Petersen, Laura & Lundin, Emma & Fallou, Laure & Sjöström, Johan & Lange, David & Teixeira, Rui & Bonavita, Alexandre, 2020. "Resilience for whom? The general public's tolerance levels as CI resilience criteria," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    8. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    9. Mohammad Najarian & Gino J. Lim, 2019. "Design and Assessment Methodology for System Resilience Metrics," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1885-1898, September.
    10. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    11. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    12. Finkelstein, Maxim, 2007. "Imperfect repair and lifesaving in heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1671-1676.
    13. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Alkhatib & Mothanna Almahmood & Omar Elayan & Laith Abualigah, 2022. "Regional analytics and forecasting for most affected stock markets: The case of GCC stock markets during COVID-19 pandemic," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1298-1308, June.
    2. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    3. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    5. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    6. Luo, Xu & Ge, Zhexue & Zhang, ShiGang & Yang, Yongmin, 2021. "A method for the maintainability evaluation at design stage using maintainability design attributes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    8. Giesecke, Matthias & Kind, Michael, 2013. "Bridge Unemployment in Germany: Response in Labour Supply to an Increased Early Retirement Age," Ruhr Economic Papers 410, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Michael Kind, 2015. "A Level Playing Field: An Optimal Weighting Scheme of Dismissal Protection Characteristics," LABOUR, CEIS, vol. 29(1), pages 79-99, March.
    11. Giesecke, Matthias & Kind, Michael, 2015. "Does Raising the Early Retirement Age Increase Reemployment of Older Unemployed Workers?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113192, Verein für Socialpolitik / German Economic Association.
    12. Michael Kind, 2013. "A Level Playing Field – An Optimal Weighting Scheme of Dismissal Protection Characteristics," Ruhr Economic Papers 0442, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    13. Anderson, John E. & Giertz, Seth H. & Shimul, Shafiun N., 2022. "Reducing property taxes for agriculture: Diffusion of use-value assessment policy across the United States," Land Use Policy, Elsevier, vol. 120(C).
    14. Alderman, Harold & Lokshin, Michael & Radyakin, Sergiy, 2011. "Tall claims: Mortality selection and the height of children in India," Economics & Human Biology, Elsevier, vol. 9(4), pages 393-406.
    15. Zeynab Allahkarami & Ahmad Reza Sayadi & Behzad Ghodrati, 2021. "Identifying the mixed effects of unobserved and observed risk factors on the reliability of mining hauling system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 281-289, April.
    16. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    17. repec:zbw:rwirep:0442 is not listed on IDEAS
    18. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    19. Matthias Giesecke & Michael Kind, 2013. "Bridge Unemployment in Germany: Response in Labour Supply to an Increased Early Retirement Age," Ruhr Economic Papers 0410, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    20. repec:zbw:rwirep:0410 is not listed on IDEAS
    21. Guiso, Luigi & Jappelli, Tullio, 2002. "Private Transfers, Borrowing Constraints and the Timing of Homeownership," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 315-339, May.
    22. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01131-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.