IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v181y2019icp116-126.html
   My bibliography  Save this article

Near-optimal planning using approximate dynamic programming to enhance post-hazard community resilience management

Author

Listed:
  • Nozhati, Saeed
  • Sarkale, Yugandhar
  • Ellingwood, Bruce
  • K.P. Chong, Edwin
  • Mahmoud, Hussam

Abstract

The lack of a comprehensive decision-making approach at the community level is an important problem that warrants immediate attention. Network-level decision-making algorithms need to solve large-scale optimization problems that pose computational challenges. The complexity of the optimization problems increases when various sources of uncertainty are considered. This research introduces a sequential discrete optimization approach, as a decision-making framework at the community level for recovery management. The proposed mathematical approach leverages approximate dynamic programming along with heuristics for the determination of recovery actions. Our methodology overcomes the curse of dimensionality and manages multi-state, large-scale infrastructure systems following disasters. We also provide computational results showing that our methodology not only incorporates recovery policies of responsible public and private entities within the community but also substantially enhances the performance of their underlying strategies with limited resources. The methodology can be implemented efficiently to identify near-optimal recovery decisions following a severe earthquake based on multiple objectives for an electrical power network of a testbed community coarsely modeled after Gilroy, California, United States. The proposed optimization method supports risk-informed community decision makers within chaotic post-hazard circumstances.

Suggested Citation

  • Nozhati, Saeed & Sarkale, Yugandhar & Ellingwood, Bruce & K.P. Chong, Edwin & Mahmoud, Hussam, 2019. "Near-optimal planning using approximate dynamic programming to enhance post-hazard community resilience management," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 116-126.
  • Handle: RePEc:eee:reensy:v:181:y:2019:i:c:p:116-126
    DOI: 10.1016/j.ress.2018.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018305180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    2. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    3. Ouyang, Yanfeng & Madanat, Samer, 2004. "Optimal scheduling of rehabilitation activities for multiple pavement facilities: exact and approximate solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 347-365, June.
    4. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    5. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Qiling & Chen, Suren, 2021. "Resilience-based Recovery Scheduling of Transportation Network in Mixed Traffic Environment: A Deep-Ensemble-Assisted Active Learning Approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Himadri Sen Gupta & Omar M. Nofal & Andrés D. González & Charles D. Nicholson & John W. van de Lindt, 2022. "Optimal Selection of Short- and Long-Term Mitigation Strategies for Buildings within Communities under Flooding Hazard," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    3. Hui Xu & Yang Li & Yongtao Tan & Ninghui Deng, 2021. "A Scientometric Review of Urban Disaster Resilience Research," IJERPH, MDPI, vol. 18(7), pages 1-27, April.
    4. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2021. "Resilient communication model for satellite networks using clustering technique," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Ulusan, Aybike & Ergun, Özlem, 2021. "Approximate dynamic programming for network recovery problems with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    6. Yang, Sen & Zhang, Yi & Lu, Xinzheng & Guo, Wei & Miao, Huiquan, 2024. "Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "A reliable framework for satellite networks achieving energy requirements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Himoto, Keisuke & Suzuki, Keichi, 2021. "Computational framework for assessing the fire resilience of buildings using the multi-layer zone model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Nozhati, Saeed & Sarkale, Yugandhar & Chong, Edwin K.P. & Ellingwood, Bruce R., 2020. "Optimal stochastic dynamic scheduling for managing community recovery from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Elkady, Sahar & Hernantes, Josune & Labaka, Leire, 2023. "Towards a resilient community: A decision support framework for prioritizing stakeholders' interaction areas," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    3. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    4. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    5. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2017. "Performance analysis of an aggregation and disaggregation solution procedure to obtain a maintenance plan for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 652-662.
    7. Nozhati, Saeed & Sarkale, Yugandhar & Chong, Edwin K.P. & Ellingwood, Bruce R., 2020. "Optimal stochastic dynamic scheduling for managing community recovery from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Yuan, Xian-Xun & Higo, Eishiro & Pandey, Mahesh D., 2021. "Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    11. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    13. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    16. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Lozano, Jorge-Mario & Zuluaga, Santiago & Sánchez-Silva, Mauricio, 2020. "Developing flexible management strategies in infrastructure: The sequential expansion problem for infrastructure analysis (SEPIA)," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    18. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    20. Memarzadeh, Milad & Pozzi, Matteo & Kolter, J. Zico, 2016. "Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 159-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:181:y:2019:i:c:p:116-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.