IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i4p392-405.html
   My bibliography  Save this article

Stochastic model of reliability for use in the evaluation of the economic impact of a failure using life cycle cost analysis. Case studies on the rail freight and oil industries

Author

Listed:
  • Carlos Parra
  • Adolfo Crespo
  • Fredy Kristjanpoller
  • Pablo Viveros

Abstract

This paper aims to investigate the technical and economic factors related to failure costs (non-reliability costs) within the life cycle cost analysis (LCCA) of a production asset. Life cycle costing is a well-established method for the evaluation of alternative asset options. It is a structured approach that addresses all the elements of this cost and can be used to produce a spend profile for an asset over its anticipated life-span. The results of an LCCA are used to assist management in the decision-making process when there is a choice of options. The main costs can be classified as the capital expenditure incurred when the asset is purchased, and the operating expenditure incurred during the asset’s life. This paper explores different aspects related to the failure costs within the LCCA, and describes the most important aspects of the stochastic model: a non-homogeneous Poisson process. This model is used to estimate the frequency of failures and their impact which can cause various failures in the total costs of a production asset. This paper also contains a case study for the rail freight industry (Chile) and the oil industry (Petronox, Venezuela) where the proposed model and concepts are applied, and respectively compared in terms of results. Finally, the presented model provides maintenance managers with a decision tool that optimizes the LCCA of an asset and increases the efficiency of the decision-making process related to the control of failures.

Suggested Citation

  • Carlos Parra & Adolfo Crespo & Fredy Kristjanpoller & Pablo Viveros, 2012. "Stochastic model of reliability for use in the evaluation of the economic impact of a failure using life cycle cost analysis. Case studies on the rail freight and oil industries," Journal of Risk and Reliability, , vol. 226(4), pages 392-405, August.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:4:p:392-405
    DOI: 10.1177/1748006X12441880
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X12441880
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X12441880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    2. Veber, B. & Nagode, M. & Fajdiga, M., 2008. "Generalized renewal process for repairable systems based on finite Weibull mixture," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1461-1472.
    3. J. I. Ansell & M. J. Phillips, 1989. "Practical Problems in the Statistical Analysis of Reliability Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(2), pages 205-231, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orlando Durán & Paulo Andrés Durán, 2019. "Prioritization of Physical Assets for Maintenance and Production Sustainability," Sustainability, MDPI, vol. 11(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    2. Yang, Duo & He, Zhen & He, Shuguang, 2016. "Warranty claims forecasting based on a general imperfect repair model considering usage rate," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 147-154.
    3. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    4. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    5. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    6. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    7. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    8. Hu, Wei & Yang, Zhaojun & Chen, Chuanhai & Wu, Yue & Xie, Qunya, 2021. "A Weibull-based recurrent regression model for repairable systems considering double effects of operation and maintenance: A case study of machine tools," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Hu, Wei & Westerlund, Per & Hilber, Patrik & Chen, Chuanhai & Yang, Zhaojun, 2022. "A general model, estimation, and procedure for modeling recurrent failure process of high-voltage circuit breakers considering multivariate impacts," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    11. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    12. Ali Nouri Gharahasanlou & Mohammad Ataei & Reza Khalokakaie & Abbas Barabadi & Vahid Einian, 2017. "Risk based maintenance strategy: a quantitative approach based on time-to-failure model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 602-611, September.
    13. Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.
    14. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    15. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
    16. Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Zantek, Paul F. & Hanson, Timothy & Damien, Paul & Popova, Elmira, 2015. "A decision dependent stochastic process model for repairable systems with applications," Operations Research Perspectives, Elsevier, vol. 2(C), pages 73-80.
    18. Remy, Emmanuel & Corset, Franck & Despréaux, Stéphane & Doyen, Laurent & Gaudoin, Olivier, 2013. "An example of integrated approach to technical and economic optimization of maintenance," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 8-19.
    19. Mostafa Aliyari & Yonas Z Ayele & Abbas Barabadi & Enrique Lopez Droguett, 2019. "Risk analysis in low-voltage distribution systems," Journal of Risk and Reliability, , vol. 233(2), pages 118-138, April.
    20. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:4:p:392-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.