IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp137-148.html
   My bibliography  Save this article

Incomplete statistical information limits the utility of high-order polynomial chaos expansions

Author

Listed:
  • Oladyshkin, Sergey
  • Nowak, Wolfgang

Abstract

Polynomial chaos expansion (PCE) is a well-established massive stochastic model reduction technique that approximates the dependence of model output on uncertain input parameters. In many practical situations, only incomplete and inaccurate statistical knowledge on uncertain input parameters are available. Fortunately, to construct a finite-order expansion, only some partial information on the probability measure is required that can be simply represented by a finite number of statistical moments. Such situations, however, trigger the question to what degree higher-order statistical moments of input data are increasingly uncertain. On the one hand, increasing uncertainty in higher moments will lead to increasing inaccuracy in the corresponding chaos expansion and its result. On the other hand, the degree of expansion should adequately reflect the non-linearity of the analyzed model to minimize the approximation error of the expansion. Observation of the PCE convergence when statistical input information is incomplete demonstrates that higher-order PCE expansions without adequate data support are useless. Moreover, it makes apparent that PCE of a certain order is adequate just for a corresponding amount of available input data. The key idea of the current work is to align the order of expansion with a compromise between the degree of non-linearity of the model and the reliability of statistical information on the input parameters. To assure an optimal choice of the expansion order, we offer a simple relation that helps to align available input statistical data with an adequate expansion order. As fundamental steps into this direction, we propose overall error estimates for the statistical type of error that results from inaccurate statistical information plus the error that results from truncating the expansion of a non-linear model. Our key message is that any order of expansion is only justified if accompanied by reliable statistical information on input moments of a certain higher order.

Suggested Citation

  • Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:137-148
    DOI: 10.1016/j.ress.2017.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016306263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crestaux, Thierry & Le Maıˆtre, Olivier & Martinez, Jean-Marc, 2009. "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1161-1172.
    2. Dubreuil, S. & Berveiller, M. & Petitjean, F. & Salaün, M., 2014. "Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 263-275.
    3. Attar, Peter J. & Vedula, Prakash, 2013. "On convergence of moments in uncertainty quantification based on direct quadrature," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 119-125.
    4. Garcia-Cabrejo, Oscar & Valocchi, Albert, 2014. "Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 25-36.
    5. Xie, Qimiao & Wang, Jinhui & Lu, Shouxiang & Hensen, Jan L.M., 2016. "An optimization method for the distance between exits of buildings considering uncertainties based on arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 188-196.
    6. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    7. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    8. Buzzard, Gregery T., 2012. "Global sensitivity analysis using sparse grid interpolation and polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 82-89.
    9. S. S. Isukapalli & A. Roy & P. G. Georgopoulos, 1998. "Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 351-363, June.
    10. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    11. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    12. Haro Sandoval, Eduardo & Anstett-Collin, Floriane & Basset, Michel, 2012. "Sensitivity study of dynamic systems using polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 15-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Xiao, Sinan & Praditia, Timothy & Oladyshkin, Sergey & Nowak, Wolfgang, 2021. "Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis," Applied Energy, Elsevier, vol. 285(C).
    4. Marius Marinescu & Alberto Olivares & Ernesto Staffetti & Junzi Sun, 2023. "Polynomial Chaos Expansion-Based Enhanced Gaussian Process Regression for Wind Velocity Field Estimation from Aircraft-Derived Data," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    5. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    6. Kröker, Ilja & Oladyshkin, Sergey, 2022. "Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    2. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.
    3. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    4. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    5. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    6. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    7. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    8. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    10. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2016. "A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 1-14.
    11. Attar, Peter J. & Vedula, Prakash, 2013. "On convergence of moments in uncertainty quantification based on direct quadrature," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 119-125.
    12. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    14. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    15. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    17. Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021. "Versatile forward guidance: escaping or switching?," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    18. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    19. Melito, Gian Marco & Müller, Thomas Stephan & Badeli, Vahid & Ellermann, Katrin & Brenn, Günter & Reinbacher-Köstinger, Alice, 2021. "Sensitivity analysis study on the effect of the fluid mechanics assumptions for the computation of electrical conductivity of flowing human blood," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:137-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.