IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i2p517-527.html
   My bibliography  Save this article

Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions

Author

Listed:
  • Beccacece, Francesca
  • Borgonovo, Emanuele
  • Buzzard, Greg
  • Cillo, Alessandra
  • Zionts, Stanley

Abstract

This work addresses the early phases of the elicitation of multiattribute value functions proposing a practical method for assessing interactions and monotonicity. We exploit the link between multiattribute value functions and the theory of high dimensional model representations. The resulting elicitation method does not state any a-priori assumption on an individual’s preference structure. We test the approach via an experiment in a riskless context in which subjects are asked to evaluate mobile phone packages that differ on three attributes.

Suggested Citation

  • Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:2:p:517-527
    DOI: 10.1016/j.ejor.2015.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715003355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2010. "Multiple criteria sorting with a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1455-1470, December.
    2. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    3. Peter P. Wakker & Sylvia J. T. Jansen & Anne M. Stiggelbout, 2004. "Anchor Levels as a New Tool for the Theory and Measurement of Multiattribute Utility," Decision Analysis, INFORMS, vol. 1(4), pages 217-234, December.
    4. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    5. Aurélien Baillon & Han Bleichrodt & Alessandra Cillo, 2015. "A Tailor-Made Test of Intransitive Choice," Operations Research, INFORMS, vol. 63(1), pages 198-211, February.
    6. Korhonen, Pekka J. & Silvennoinen, Kari & Wallenius, Jyrki & Öörni, Anssi, 2012. "Can a linear value function explain choices? An experimental study," European Journal of Operational Research, Elsevier, vol. 219(2), pages 360-367.
    7. Ilia Tsetlin & Robert L. Winkler, 2009. "Multiattribute Utility Satisfying a Preference for Combining Good with Bad," Management Science, INFORMS, vol. 55(12), pages 1942-1952, December.
    8. W. M. Gorman, 1968. "The Structure of Utility Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(4), pages 367-390.
    9. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    10. Kadziński, Miłosz & Greco, Salvatore & Słowiński, Roman, 2012. "Selection of a representative value function in robust multiple criteria ranking and choice," European Journal of Operational Research, Elsevier, vol. 217(3), pages 541-553.
    11. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    12. Beccacece, F. & Borgonovo, E., 2011. "Functional ANOVA, ultramodularity and monotonicity: Applications in multiattribute utility theory," European Journal of Operational Research, Elsevier, vol. 210(2), pages 326-335, April.
    13. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    14. Ali E. Abbas, 2009. "Multiattribute Utility Copulas," Operations Research, INFORMS, vol. 57(6), pages 1367-1383, December.
    15. Luc Wathieu, 2004. "Consumer Habituation," Management Science, INFORMS, vol. 50(5), pages 587-596, May.
    16. Attema, Arthur E. & Brouwer, Werner B.F., 2013. "In search of a preferred preference elicitation method: A test of the internal consistency of choice and matching tasks," Journal of Economic Psychology, Elsevier, vol. 39(C), pages 126-140.
    17. Jayavel Sounderpandian, 1991. "Value Functions When Decision Criteria Are Not Totally Substitutable," Operations Research, INFORMS, vol. 39(4), pages 592-600, August.
    18. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    19. Scott F. Richard, 1975. "Multivariate Risk Aversion, Utility Independence and Separable Utility Functions," Management Science, INFORMS, vol. 22(1), pages 12-21, September.
    20. Figueira, José Rui & Greco, Salvatore & Slowinski, Roman, 2009. "Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method," European Journal of Operational Research, Elsevier, vol. 195(2), pages 460-486, June.
    21. Han Bleichrodt & Alessandra Cillo & Enrico Diecidue, 2010. "A Quantitative Measurement of Regret Theory," Management Science, INFORMS, vol. 56(1), pages 161-175, January.
    22. Ali E. Abbas & Ronald A. Howard, 2005. "Attribute Dominance Utility," Decision Analysis, INFORMS, vol. 2(4), pages 185-206, December.
    23. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, January.
    24. John W. Payne & Dan J. Laughhunn & Roy Crum, 1984. "Multiattribute Risky Choice Behavior: The Editing of Complex Prospects," Management Science, INFORMS, vol. 30(11), pages 1350-1361, November.
    25. Crestaux, Thierry & Le Maıˆtre, Olivier & Martinez, Jean-Marc, 2009. "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1161-1172.
    26. James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Jyrki Wallenius & Stanley Zionts, 1992. "Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next Ten Years," Management Science, INFORMS, vol. 38(5), pages 645-654, May.
    27. Dolan, Paul, 2000. "The measurement of health-related quality of life for use in resource allocation decisions in health care," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 32, pages 1723-1760, Elsevier.
    28. Kadziński, Miłosz & Greco, Salvatore & Słowiński, Roman, 2013. "RUTA: A framework for assessing and selecting additive value functions on the basis of rank related requirements," Omega, Elsevier, vol. 41(4), pages 735-751.
    29. Buzzard, Gregery T., 2012. "Global sensitivity analysis using sparse grid interpolation and polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 82-89.
    30. Marco Ratto & Andrea Pagano, 2010. "Using recursive algorithms for the efficient identification of smoothing spline ANOVA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 367-388, December.
    31. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    32. Kadziński, Miłosz & Ciomek, Krzysztof & Słowiński, Roman, 2015. "Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 241(3), pages 830-841.
    33. Xiaoqun Wang, 2006. "On the Effects of Dimension Reduction Techniques on Some High-Dimensional Problems in Finance," Operations Research, INFORMS, vol. 54(6), pages 1063-1078, December.
    34. James E. Smith & Detlof von Winterfeldt, 2004. "Anniversary Article: Decision Analysis in Management Science," Management Science, INFORMS, vol. 50(5), pages 561-574, May.
    35. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    36. Angilella, Silvia & Greco, Salvatore & Lamantia, Fabio & Matarazzo, Benedetto, 2004. "Assessing non-additive utility for multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 158(3), pages 734-744, November.
    37. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Abdallah, N. & Destercke, S. & Sallak, M., 2017. "Easy and optimal queries to reduce set uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 592-604.
    2. Cao, Quoc Dung & Miles, Scott B. & Choe, Youngjun, 2022. "Infrastructure recovery curve estimation using Gaussian process regression on expert elicited data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    4. Tsionas, Mike G. & Andrikopoulos, Athanasios, 2020. "On a High-Dimensional Model Representation method based on Copulas," European Journal of Operational Research, Elsevier, vol. 284(3), pages 967-979.
    5. Luis C. Dias & Gabriela D. Oliveira & Paula Sarabando, 2021. "Choice-based preference disaggregation concerning vehicle technologies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 177-200, March.
    6. Haag, Fridolin & Lienert, Judit & Schuwirth, Nele & Reichert, Peter, 2019. "Identifying non-additive multi-attribute value functions based on uncertain indifference statements," Omega, Elsevier, vol. 85(C), pages 49-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Beccacece & Emanuele Borgonovo & Greg Buzzard & Alessandra Cillo & Stanley Zionts, 2013. "Elicitation of Multiattribute Value Functions through High Dimensional Model Representations," Working Papers 495, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    2. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    3. Beccacece, F. & Borgonovo, E., 2011. "Functional ANOVA, ultramodularity and monotonicity: Applications in multiattribute utility theory," European Journal of Operational Research, Elsevier, vol. 210(2), pages 326-335, April.
    4. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    5. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    6. Haag, Fridolin & Lienert, Judit & Schuwirth, Nele & Reichert, Peter, 2019. "Identifying non-additive multi-attribute value functions based on uncertain indifference statements," Omega, Elsevier, vol. 85(C), pages 49-67.
    7. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    8. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    9. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    10. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    11. Wu, Xingli & Liao, Huchang, 2023. "Value-driven preference disaggregation analysis for uncertain preference information," Omega, Elsevier, vol. 115(C).
    12. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    13. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    14. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    15. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    16. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    17. Hurson, Christian & Siskos, Yannis, 2014. "A synergy of multicriteria techniques to assess additive value models," European Journal of Operational Research, Elsevier, vol. 238(2), pages 540-551.
    18. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    19. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    20. Sobrie, Olivier & Gillis, Nicolas & Mousseau, Vincent & Pirlot, Marc, 2018. "UTA-poly and UTA-splines: Additive value functions with polynomial marginals," European Journal of Operational Research, Elsevier, vol. 264(2), pages 405-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:2:p:517-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.