IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p320-d1028335.html
   My bibliography  Save this article

Discrete Model for a Multi-Objective Maintenance Optimization Problem of Safety Systems

Author

Listed:
  • Radim Briš

    (Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

  • Nuong Thi Thuy Tran

    (Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

Abstract

The aim of this article was to solve a multi-objective maintenance optimization problem by minimizing both unavailability and cost through the use of an optimal maintenance strategy. The problem took into account three different system designs upon which the objective functions are dependent, and the time to start preventive maintenance (PM) was used as a decision variable. This variable was optimized for all system components using a discrete maintenance model that allows for the specification of several discrete values of the decision variable in advance to find the optimal one. The optimization problem was solved using innovative computing methodology and newly updated software in MATLAB, which was used to quantify the unavailability of a complex system represented through a directed acyclic graph. A cost model was also developed to compute the cost of different maintenance configurations, and the optimal configuration was found. The results for a selected real system (a real fluid injection system adopted from references) showed that unavailability was less sensitive to variations in maintenance configurations, while cost variations were more noticeable in relation to different maintenance configurations. Applying PM, the increasing value of the decision variable increased cost because it led to more frequent corrective maintenance (CM) actions, and recovery times due to CM were more expensive than recovery times due to PM.

Suggested Citation

  • Radim Briš & Nuong Thi Thuy Tran, 2023. "Discrete Model for a Multi-Objective Maintenance Optimization Problem of Safety Systems," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:320-:d:1028335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    2. Gao, Yicong & Feng, Yixiong & Zhang, Zixian & Tan, Jianrong, 2015. "An optimal dynamic interval preventive maintenance scheduling for series systems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 19-30.
    3. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    4. Briš, Radim, 2008. "Parallel simulation algorithm for maintenance optimization based on directed Acyclic Graph," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 874-884.
    5. Deng, Qichen & Santos, Bruno F. & Curran, Richard, 2020. "A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 281(2), pages 256-273.
    6. Adjoul, Oussama & Benfriha, Khaled & Zant, Chawki El & Aoussat, Améziane, 2021. "Algorithmic Strategy for Simultaneous Optimization of Design and Maintenance of Multi-Component Industrial Systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    8. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2015. "Optimum maintenance strategy under uncertainty in the lifetime distribution," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 59-67.
    9. Aghezzaf, El-Houssaine & Khatab, Abdelhakim & Tam, Phuoc Le, 2016. "Optimizing production and imperfect preventive maintenance planning׳s integration in failure-prone manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 190-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
    3. Syan, Chanan S. & Ramsoobag, Geeta, 2019. "Maintenance applications of multi-criteria optimization: A review," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    4. Xiaosheng Zhang & Jianqiao Chen & Ben Han & Junxiang Li, 2019. "Multi-mission selective maintenance modelling for multistate systems over a finite time horizon," Journal of Risk and Reliability, , vol. 233(6), pages 1040-1059, December.
    5. Radim Briš & Pavel Jahoda, 2022. "Really Ageing Systems Undergoing a Discrete Maintenance Optimization," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    6. Efraim Laksman & Ann-Brith Strömberg & Michael Patriksson, 2020. "The stochastic opportunistic replacement problem, part III: improved bounding procedures," Annals of Operations Research, Springer, vol. 292(2), pages 711-733, September.
    7. Andrés Cacereño & David Greiner & Blas J. Galván, 2021. "Multi-Objective Optimum Design and Maintenance of Safety Systems: An In-Depth Comparison Study Including Encoding and Scheduling Aspects with NSGA-II," Mathematics, MDPI, vol. 9(15), pages 1-39, July.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Boardman, Nicholas T. & Sullivan, Kelly M., 2024. "Approximate dynamic programming for condition-based node deployment in a wireless sensor network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    11. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Maquirriain, Javier & García-Villoria, Alberto & Pastor, Rafael, 2024. "Matheuristics for scheduling of maintenance service with linear operation cost and step function maintenance cost," European Journal of Operational Research, Elsevier, vol. 315(1), pages 73-87.
    13. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    14. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    15. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    16. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Bingtao Hu & Yixiong Feng & Hao Zheng & Jianrong Tan, 2018. "Sequence Planning for Selective Disassembly Aiming at Reducing Energy Consumption Using a Constraints Relation Graph and Improved Ant Colony Optimization Algorithm," Energies, MDPI, vol. 11(8), pages 1-18, August.
    18. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    19. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    20. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:320-:d:1028335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.