IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v167y2017icp49-57.html
   My bibliography  Save this article

An importance measure for multistate systems with external factors

Author

Listed:
  • Dui, Hongyan
  • Si, Shubin
  • Wu, Shaomin
  • Yam, Richard C.M.

Abstract

Many technical systems are operated under the impact of external factors that may cause the systems to fail. For such systems, an interesting question is how those external factors and their impacts on the system can be identified at an earlier stage. Importance measures in reliability engineering are used to prioritise weak components (or states) of a system. Component failures and the impact of external factors in the real world may be statistically dependent as external factors may affect system performance. This paper proposes a new importance measure for analysing the impact of external factors on system performance. The measure can evaluate the degree of the impact of external factors on the system and can therefore help engineers to identify the factors with the strong impact on the system performance. A real-world case study is used to illustrate its applicability.

Suggested Citation

  • Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
  • Handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:49-57
    DOI: 10.1016/j.ress.2017.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201630566X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    2. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    3. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    4. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    5. Vaurio, Jussi K., 2010. "Ideas and developments in importance measures and fault-tree techniques for reliability and risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 99-107.
    6. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    7. Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
    8. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    9. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2013. "Component state-based integrated importance measure for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 75-83.
    10. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    11. Korczak, Edward & Levitin, Gregory, 2007. "Survivability of systems under multiple factor impact," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 269-274.
    12. Natvig, Bent, 1979. "A suggestion of a new measure of importance of system components," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 319-330, December.
    13. Levitin, Gregory & Ben-Haim, Hanoch, 2008. "Importance of protections against intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 639-646.
    14. Tyrväinen, T., 2013. "Risk importance measures in the dynamic flowgraph methodology," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 35-50.
    15. Vaurio, J.K., 2011. "Importance measures for multi-phase missions," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 230-235.
    16. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    17. Barlow, Richard E. & Proschan, Frank, 1975. "Importance of system components and fault tree events," Stochastic Processes and their Applications, Elsevier, vol. 3(2), pages 153-173, April.
    18. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2014. "Optimal defense with variable number of overarching and individual protections," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 81-90.
    19. Borgonovo, Emanuele & Aliee, Hananeh & Glaß, Michael & Teich, Jürgen, 2016. "A new time-independent reliability importance measure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 427-442.
    20. Borgonovo, E., 2007. "Differential, criticality and Birnbaum importance measures: An application to basic event, groups and SSCs in event trees and binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1458-1467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Hongyan Dui & Yuheng Yang & Yun-an Zhang & Yawen Zhu, 2022. "Recovery Analysis and Maintenance Priority of Metro Networks Based on Importance Measure," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    6. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Yaguang Wu & Qingan Qiu, 2022. "Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    8. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Zhang, Chengjie & Qi, Faqun & Zhang, Ning & Li, Yong & Huang, Hongzhong, 2022. "Maintenance policy optimization for multi-component systems considering dynamic importance of components," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Fan, Yu, 2020. "Multi-state balanced systems in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2017. "A cost-based integrated importance measure of system components for preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 98-104.
    2. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.
    3. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    5. Huseby, Arne B. & Natvig, Bent, 2013. "Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 186-198.
    6. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Wu, Shaomin & Chen, Yi & Wu, Qingtai & Wang, Zhonglai, 2016. "Linking component importance to optimisation of preventive maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 26-32.
    8. Dutuit, Yves & Rauzy, Antoine, 2015. "On the extension of Importance Measures to complex components," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 161-168.
    9. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2018. "Importance measures for optimal structure in linear consecutive-k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 339-350.
    11. Natvig, Bent & Huseby, Arne B. & Reistadbakk, Mads O., 2011. "Measures of component importance in repairable multistate systems—a numerical study," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1680-1690.
    12. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    13. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Shumin Li & Shubin Si & Liudong Xing & Shudong Sun, 2014. "Integrated importance of multi-state fault tree based on multi-state multi-valued decision diagram," Journal of Risk and Reliability, , vol. 228(2), pages 200-208, April.
    16. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    18. Dui, Hongyan & Li, Shumin & Xing, Liudong & Liu, Hanlin, 2019. "System performance-based joint importance analysis guided maintenance for repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 162-175.
    19. Roy Cerqueti, 2022. "A new concept of reliability system and applications in finance," Annals of Operations Research, Springer, vol. 312(1), pages 45-64, May.
    20. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:49-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.