IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i12p1608-1619.html
   My bibliography  Save this article

Multi-state component criticality analysis for reliability improvement in multi-state systems

Author

Listed:
  • Ramirez-Marquez, Jose Emmanuel
  • Coit, David W.

Abstract

This paper evaluates and implements composite importance measures (CIM) for multi-state systems with multi-state components (MSMC). Importance measures are frequently used as a means to evaluate and rank the impact and criticality of individual components within a system yet they are less often used as a guide to prioritize system reliability improvements. For multi-state systems, previously developed measures sometimes are not appropriate and they do not meet all user needs. This study has two inter-related goals: first, to distinguish between two types of importance measures that can be used for evaluating the criticality of components in MSMC with respect to multi-state system reliability, and second, based on the CIM, to develop a component allocation heuristic to maximize system reliability improvements. The heuristic uses Monte-Carlo simulation together with the max-flow min-cut algorithm as a means to compute component CIM. These measures are then transformed into a cost-based composite metric that guides the allocation of redundant elements into the existing system. Experimental results for different system complexities show that these new CIM can effectively estimate the criticality of components with respect to multi-state system reliability. Similarly, these results show that the CIM-based heuristic can be used as a fast and effective technique to guide system reliability improvements.

Suggested Citation

  • Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:12:p:1608-1619
    DOI: 10.1016/j.ress.2006.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006002195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    2. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    3. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    4. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    5. Serkan Eryılmaz, 2011. "A new perspective to stress–strength models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 101-115, February.
    6. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    7. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    8. Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
    9. Kołowrocki, K. & Kwiatuszewska-Sarnecka, B., 2008. "Reliability and risk analysis of large systems with ageing components," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1821-1829.
    10. C Jacksonn & A Mosleh, 2012. "Bayesian inference with overlapping data: methodology for reliability estimation of multi-state on-demand systems," Journal of Risk and Reliability, , vol. 226(3), pages 283-294, June.
    11. Mohammad Nadjafi & Mohammad Ali Farsi & Hossein Jabbari, 2017. "Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 532-541, September.
    12. Tian, Zhigang & Levitin, Gregory & Zuo, Ming J., 2009. "A joint reliability–redundancy optimization approach for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1568-1576.
    13. Sharma Vikas K. & Agarwal Manju & Sen Kanwar, 2010. "Optimal Structure in Heterogeneous Multi-state Series-parallel Reliability Systems," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 127-150, January.
    14. Shao, Changzheng & Ding, Yi, 2020. "Two-interdependent-performance multi-state system: Definitions and reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
    16. Rashika Gupta & Manju Agarwal, 2006. "Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 257-277, November.
    17. Sheng, Yuhong & Ke, Hua, 2020. "Reliability evaluation of uncertain k-out-of-n systems with multiple states," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    19. Nourelfath, Mustapha & Châtelet, Eric & Nahas, Nabil, 2012. "Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 51-60.
    20. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:12:p:1608-1619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.