IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v225y2013i1p189-195.html
   My bibliography  Save this article

A cost-based importance measure for system components: An extension of the Birnbaum importance

Author

Listed:
  • Wu, Shaomin
  • Coolen, Frank P.A.

Abstract

In reliability engineering, component importance measures are used to prioritise components in a system for purposes such as reliability improvement and maintenance planning. Existing importance measures have paid little attention to the costs incurred by maintaining a system and its components within a given time period. Cost-effectiveness analysis, however, is critically important in increasingly competitive markets. This paper proposes a new cost-based importance measure which considers costs incurred by maintaining a system and its components within a finite time horizon. Possible extensions are discussed and examples are given to show the use of the new measure.

Suggested Citation

  • Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
  • Handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:189-195
    DOI: 10.1016/j.ejor.2012.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip J. Boland & Frank Proschan & Y. L. Tong, 1989. "Optimal arrangement of components via pairwise rearrangements," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(6), pages 807-815, December.
    2. Coolen-Schrijner, P. & Coolen, F.P.A., 2007. "Nonparametric adaptive age replacement with a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 74-84.
    3. Borgonovo, E., 2010. "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 485-495, August.
    4. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    5. Contini, Sergio & Matuzas, Vaidas, 2011. "New methods to determine the importance measures of initiating and enabling events in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 775-784.
    6. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe, 2010. "From differential to difference importance measures for Markov reliability models," European Journal of Operational Research, Elsevier, vol. 204(3), pages 513-521, August.
    7. Natvig, Bent, 1979. "A suggestion of a new measure of importance of system components," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 319-330, December.
    8. Gao, Xueli & Cui, Lirong & Li, Jinlin, 2007. "Analysis for joint importance of components in a coherent system," European Journal of Operational Research, Elsevier, vol. 182(1), pages 282-299, October.
    9. Barlow, Richard E. & Proschan, Frank, 1975. "Importance of system components and fault tree events," Stochastic Processes and their Applications, Elsevier, vol. 3(2), pages 153-173, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    2. Borgonovo, Emanuele & Aliee, Hananeh & Glaß, Michael & Teich, Jürgen, 2016. "A new time-independent reliability importance measure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 427-442.
    3. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    4. Dutuit, Yves & Rauzy, Antoine, 2015. "On the extension of Importance Measures to complex components," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 161-168.
    5. Zaitseva, Elena & Levashenko, Vitaly & Kostolny, Jozef, 2015. "Importance analysis based on logical differential calculus and Binary Decision Diagram," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 135-144.
    6. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    7. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    8. Mario Hellmich & Heinz-Peter Berg, 2013. "On the construction of component importance measures for semi-Markov systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 15-32, February.
    9. Borgonovo, E. & Smith, C.L., 2012. "Composite multilinearity, epistemic uncertainty and risk achievement worth," European Journal of Operational Research, Elsevier, vol. 222(2), pages 301-311.
    10. Li, Ruiying & Gao, Ying, 2022. "On the component resilience importance measures for infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    11. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Di Maio, Francesco & Baronchelli, Samuele & Zio, Enrico, 2014. "Hierarchical differential evolution for minimal cut sets identification: Application to nuclear safety systems," European Journal of Operational Research, Elsevier, vol. 238(2), pages 645-652.
    14. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2013. "Component state-based integrated importance measure for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 75-83.
    15. Rocco, Claudio M. & Hernandez-Perdomo, Elvis & Mun, Johnathan, 2021. "Application of logic regression to assess the importance of interactions between components in a network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Bent Natvig, 2011. "Measures of Component Importance in Nonrepairable and Repairable Multistate Strongly Coherent Systems," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 523-547, September.
    17. Natvig, Bent & Eide, Kristina A. & Gåsemyr, Jørund & Huseby, Arne B. & Isaksen, Stefan L., 2009. "Simulation based analysis and an application to an offshore oil and gas production system of the Natvig measures of component importance in repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1629-1638.
    18. Huseby, Arne B. & Natvig, Bent, 2013. "Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 186-198.
    19. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    20. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:189-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.