IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2732-d878521.html
   My bibliography  Save this article

Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks

Author

Listed:
  • Yaguang Wu

    (School of Management & Economics, Beijing Institute of Technology, Beijing 100081, China)

  • Qingan Qiu

    (School of Management & Economics, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Safety-critical systems are commonly required to complete specific missions in shock environments, and their failures may lead to severe economic losses and significant safety hazards. To enhance system reliability, protective devices are commonly equipped to resist external shocks. The existing literature focuses mainly on the maintenance policy of safety-critical systems, ignoring the system reliability analysis considering the effect of protective devices and the self-exciting mechanism of shocks. This paper considers multi-state systems equipped with a protective device in shock environments where valid shocks and invalid shocks occur stochastically. The system state degenerates due to valid shocks or the self-exciting behavior of invalid shocks. The self-exciting mechanism is triggered when the number of cumulative or consecutive invalid shocks suffered by the system exceeds a certain threshold, leading the system to a worse state. The protective device can be triggered to protect the system from the damage of external shocks when the state is worse than a predetermined threshold. The protective effect is characterized by reducing the probability of valid shocks. A finite Markov chain embedding approach is used to evaluate the system reliability index. In addition, an optimization model is constructed to determine the optimal triggering threshold of the protective device. The numerical results indicate that protective devices can significantly improve the reliability of the system and incorporating the self-exciting mechanism of shocks into reliability modeling contributes to accurate reliability evaluation.

Suggested Citation

  • Yaguang Wu & Qingan Qiu, 2022. "Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2732-:d:878521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anastasia Borovykh & Andrea Pascucci & Stefano La Rovere, 2018. "Systemic risk in a mean-field model of interbank lending with self-exciting shocks," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 806-819, September.
    2. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
    4. Shijia Du & Cong Lin & Lirong Cui, 2016. "Reliabilities of a single-unit system with multi-phased missions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(9), pages 2524-2537, May.
    5. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    6. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    7. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. C. Fu, James & Shmueli, Galit & Chang, Y. M., 2003. "A unified Markov chain approach for computing the run length distribution in control charts with simple or compound rules," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 457-466, December.
    9. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    11. Xian Zhao & Rong Li & Yu Fan & Qingan Qiu, 2022. "Reliability modeling for multi-state systems with a protective device considering multiple triggering mechanism," Journal of Risk and Reliability, , vol. 236(1), pages 173-193, February.
    12. Dui, Hongyan & Tian, Tianzi & Zhao, Jiangbin & Wu, Shaomin, 2022. "Comparing with the joint importance under consideration of consecutive-k-out-of-n system structure changes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    14. Wang, R., 2005. "A mixture and self-exciting model for software reliability," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 187-194, May.
    15. Xian Zhao & Ge Sun & Weijuan Xie & Cong Lin, 2015. "On generalized multi‐state start‐up demonstration tests," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(3), pages 325-338, May.
    16. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    17. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    19. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
    20. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
    21. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    22. Zhao, Xian & Sun, Jinglei & Qiu, Qingan & Chen, Ke, 2021. "Optimal inspection and mission abort policies for systems subject to degradation," European Journal of Operational Research, Elsevier, vol. 292(2), pages 610-621.
    23. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    24. Qiu, Qingan & Cui, Lirong & Gao, Hongda & Yi, He, 2018. "Optimal allocation of units in sequential probability series systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 351-363.
    25. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    26. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    27. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Fan, Yu, 2020. "Multi-state balanced systems in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    28. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    29. Kvassay, Miroslav & Zaitseva, Elena & Levashenko, Vitaly, 2017. "Importance analysis of multi-state systems based on tools of logical differential calculus," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 302-316.
    30. Chen, Yunxia & Zhang, Wenbo & Xu, Dan, 2019. "Reliability assessment with varying safety threshold for shock resistant systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 49-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanbo Song & Xiaoyue Wang, 2022. "Reliability Analysis of the Multi-State k -out-of- n : F Systems with Multiple Operation Mechanisms," Mathematics, MDPI, vol. 10(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    6. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Wang, Xiaoyue & Zhao, Xian & Wu, Congshan & Wang, Siqi, 2022. "Mixed shock model for multi-state weighted k-out-of-n: F systems with degraded resistance against shocks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Xian Zhao & Rong Li & Yu Fan & Qingan Qiu, 2022. "Reliability modeling for multi-state systems with a protective device considering multiple triggering mechanism," Journal of Risk and Reliability, , vol. 236(1), pages 173-193, February.
    12. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Liu, Bing & Huang, Hao & Deng, Qiao, 2022. "On optimal condition based task termination policy for phased task systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    17. Cheng, Guoqing & Shen, Jiayi & Wang, Fang & Li, Ling & Yang, Nan, 2024. "Optimal mission abort policy for a multi-component system with failure interaction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Yaguang Wu, 2023. "Optimal Stopping and Loading Rules Considering Multiple Attempts and Task Success Criteria," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    19. Qiu, Qingan & Kou, Meng & Chen, Ke & Deng, Qiao & Kang, Fengming & Lin, Cong, 2021. "Optimal stopping problems for mission oriented systems considering time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Zhao, Xian & Sun, Jinglei & Qiu, Qingan & Chen, Ke, 2021. "Optimal inspection and mission abort policies for systems subject to degradation," European Journal of Operational Research, Elsevier, vol. 292(2), pages 610-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2732-:d:878521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.