IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v147y2016icp49-59.html
   My bibliography  Save this article

Separation of aleatory and epistemic uncertainty in probabilistic model validation

Author

Listed:
  • Mullins, Joshua
  • Ling, You
  • Mahadevan, Sankaran
  • Sun, Lin
  • Strachan, Alejandro

Abstract

This paper investigates model validation under a variety of different data scenarios and clarifies how different validation metrics may be appropriate for different scenarios. In the presence of multiple uncertainty sources, model validation metrics that compare the distributions of model prediction and observation are considered. Both ensemble validation and point-by-point approaches are discussed, and it is shown how applying the model reliability metric point-by-point enables the separation of contributions from aleatory and epistemic uncertainty sources. After individual validation assessments are made at different input conditions, it may be desirable to obtain an overall measure of model validity across the entire domain. This paper proposes an integration approach that assigns weights to the validation results according to the relevance of each validation test condition to the overall intended use of the model in prediction. Since uncertainty propagation for probabilistic validation is often unaffordable for complex computational models, surrogate models are often used; this paper proposes an approach to account for the additional uncertainty introduced in validation by the uncertain fit of the surrogate model. The proposed methods are demonstrated with a microelectromechanical system (MEMS) example.

Suggested Citation

  • Mullins, Joshua & Ling, You & Mahadevan, Sankaran & Sun, Lin & Strachan, Alejandro, 2016. "Separation of aleatory and epistemic uncertainty in probabilistic model validation," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 49-59.
  • Handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:49-59
    DOI: 10.1016/j.ress.2015.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebba, Ramesh & Mahadevan, Sankaran, 2006. "Validation of models with multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 861-871.
    2. Koslowski, M. & Strachan, Alejandro, 2011. "Uncertainty propagation in a multiscale model of nanocrystalline plasticity," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1161-1170.
    3. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    4. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    5. Rebba, Ramesh & Mahadevan, Sankaran, 2008. "Computational methods for model reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1197-1207.
    6. Rebba, Ramesh & Mahadevan, Sankaran & Huang, Shuping, 2006. "Validation and error estimation of computational models," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1390-1397.
    7. Scott Ferson & William L. Oberkampf, 2009. "Validation of imprecise probability models," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 3(1/2/3), pages 3-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Wang, Zhiheng & Hawi, Philippe & Masri, Sami & Aitharaju, Venkat & Ghanem, Roger, 2023. "Stochastic multiscale modeling for quantifying statistical and model errors with application to composite materials," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Yuan, Xiukai & Faes, Matthias G.R. & Liu, Shaolong & Valdebenito, Marcos A. & Beer, Michael, 2021. "Efficient imprecise reliability analysis using the Augmented Space Integral," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Morales-Torres, Adrián & Escuder-Bueno, Ignacio & Serrano-Lombillo, Armando & Castillo Rodríguez, Jesica T., 2019. "Dealing with epistemic uncertainty in risk-informed decision making for dam safety management," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    7. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    8. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    9. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2020. "A generalized Bayesian approach to model calibration," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    2. Ling, You & Mahadevan, Sankaran, 2013. "Quantitative model validation techniques: New insights," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 217-231.
    3. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.
    4. Li, Chenzhao & Mahadevan, Sankaran, 2016. "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 32-43.
    5. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    6. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    7. Zhao, Lufeng & Lu, Zhenzhou & Yun, Wanying & Wang, Wenjin, 2017. "Validation metric based on Mahalanobis distance for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 80-89.
    8. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    10. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Model validation under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1232-1241.
    11. Li, Luyi & Lu, Zhenzhou, 2018. "A new method for model validation with multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 579-592.
    12. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Wu, Danqing & Lu, Zhenzhou & Wang, Yanping & Cheng, Lei, 2015. "Model validation and calibration based on component functions of model output," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 59-70.
    14. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2014. "An illustration of the use of an approach for treating model uncertainties in risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 46-53.
    15. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Maupin, Kathryn A. & Swiler, Laura P., 2020. "Model discrepancy calibration across experimental settings," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Li, Chenzhao & Mahadevan, Sankaran, 2018. "Efficient approximate inference in Bayesian networks with continuous variables," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 269-280.
    19. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    20. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:49-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.