IDEAS home Printed from https://ideas.repec.org/a/ids/ijrsaf/v3y2009i1-2-3p3-22.html
   My bibliography  Save this article

Validation of imprecise probability models

Author

Listed:
  • Scott Ferson
  • William L. Oberkampf

Abstract

Validation is the assessment of the match between a model's predictions and empirical observations. It can be complex when either data or the prediction is characterised as an uncertain number (i.e. interval, probability distribution, p-box, or more general structure). Validation could measure the discrepancy between the shapes of the two uncertain numbers representing prediction and data, or it could characterise the differences between realisations drawn from the respective uncertain numbers. The unification between these two concepts relies on defining the validation measure between prediction and data as the shortest possible distance given the imprecision about the distributions and their dependencies.

Suggested Citation

  • Scott Ferson & William L. Oberkampf, 2009. "Validation of imprecise probability models," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 3(1/2/3), pages 3-22.
  • Handle: RePEc:ids:ijrsaf:v:3:y:2009:i:1/2/3:p:3-22
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=26832
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Suo & Yang Qi & Kai Sun & Jingyuan Xu, 2023. "A Novel Model Validation Method Based on Area Metric Disagreement between Accelerated Storage Distributions and Natural Storage Data," Mathematics, MDPI, vol. 11(11), pages 1-18, May.
    2. McKeand, Austin M. & Gorguluarslan, Recep M. & Choi, Seung-Kyum, 2021. "Stochastic analysis and validation under aleatory and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Ling, You & Mahadevan, Sankaran, 2013. "Quantitative model validation techniques: New insights," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 217-231.
    4. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    5. Li, Chenzhao & Mahadevan, Sankaran, 2016. "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 32-43.
    6. Zhao, Lufeng & Lu, Zhenzhou & Yun, Wanying & Wang, Wenjin, 2017. "Validation metric based on Mahalanobis distance for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 80-89.
    7. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    8. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.
    9. Mullins, Joshua & Ling, You & Mahadevan, Sankaran & Sun, Lin & Strachan, Alejandro, 2016. "Separation of aleatory and epistemic uncertainty in probabilistic model validation," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 49-59.
    10. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    11. Wu, Danqing & Lu, Zhenzhou & Wang, Yanping & Cheng, Lei, 2015. "Model validation and calibration based on component functions of model output," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 59-70.
    12. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijrsaf:v:3:y:2009:i:1/2/3:p:3-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=98 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.