IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v142y2015icp1-8.html
   My bibliography  Save this article

A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process

Author

Listed:
  • Liu, Baoliang
  • Cui, Lirong
  • Wen, Yanqing
  • Shen, Jingyuan

Abstract

This paper studies a cold standby repairable system with working vacations and vacation interruptions. The repairman׳s multiple vacation, the working vacation policy and the vacation interruption policy are considered simultaneously. The lifetime of component follows a Phase-type (PH) distribution. The repair time in the regular repair period and the working vacation period are other two Phase-type distributions with different representations, and the successive vacation times are governed by a Markovian arrival process (MAP). For this system, a vector-valued Markov process is constructed. We obtain several important performance measures for the system in transient and stationary regimes applying the matrix-analytic method. Finally, a numerical example is given to illustrate the results obtained in the paper.

Suggested Citation

  • Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
  • Handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:1-8
    DOI: 10.1016/j.ress.2015.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2006. "A deteriorating two-system with two repair modes and sojourn times phase-type distributed," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 1-9.
    2. Shan Gao & Jinting Wang & Wei Wayne Li, 2014. "An M/G/1 Retrial Queue With General Retrial Times, Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-25.
    3. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
    4. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    5. Zhang, Yuan Lin & Wang, Guan Jun, 2009. "A geometric process repair model for a repairable cold standby system with priority in use and repair," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1782-1787.
    6. Leung, Kit Nam Francis & Zhang, Yuan Lin & Lai, Kin Keung, 2011. "Analysis for a two-dissimilar-component cold standby repairable system with repair priority," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1542-1551.
    7. Montoro-Cazorla, Delia & Perez-Ocon, Rafael, 2006. "Replacement times and costs in a degrading system with several types of failure: The case of phase-type holding times," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1193-1209, December.
    8. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    9. Zhang, Yuan Lin & Wang, Guan Jun, 2007. "A deteriorating cold standby repairable system with priority in use," European Journal of Operational Research, Elsevier, vol. 183(1), pages 278-295, November.
    10. Perez-Ocon, Rafael & Montoro-Cazorla, Delia, 2006. "A multiple warm standby system with operational and repair times following phase-type distributions," European Journal of Operational Research, Elsevier, vol. 169(1), pages 178-188, February.
    11. Ruiz-Castro, Juan Eloy & Fernández-Villodre, Gemma, 2012. "A complex discrete warm standby system with loss of units," European Journal of Operational Research, Elsevier, vol. 218(2), pages 456-469.
    12. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael & del Carmen Segovia, Maria, 2009. "Replacement policy in a system under shocks following a Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 497-502.
    13. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    14. Yuan, Li & Xu, Jian, 2011. "An optimal replacement policy for a repairable system based on its repairman having vacations," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 868-875.
    15. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A redundant n-system under shocks and repairs following Markovian arrival processes," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 69-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    2. Jain, Madhu & Kumar, Pankaj & Singh, Mayank & Gupta, Ritu, 2024. "Cost optimization and reliability analysis of fault tolerant system with service interruption and reboot," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Ramírez-Cobo, Pepa, 2017. "Findings about the two-state BMMPP for modeling point processes in reliability and queueing systems," DES - Working Papers. Statistics and Econometrics. WS 24622, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    5. Shekhar, Chandra & Kumar, Neeraj & Gupta, Amit & Kumar, Amit & Varshney, Shreekant, 2020. "Warm-spare provisioning computing network with switching failure, common cause failure, vacation interruption, and synchronized reneging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    6. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Du, Shijia & Zeng, Zhiguo & Cui, Lirong & Kang, Rui, 2017. "Reliability analysis of Markov history-dependent repairable systems with neglected failures," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 134-142.
    8. Rohit Patawa & Pramendra Singh Pundir & Alok Kumar Sigh & Abhinav Singh, 2022. "Some inferences on reliability measures of two-non-identical units cold standby system waiting for repair," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 172-188, February.
    9. Yi, He & Cui, Lirong, 2017. "Distribution and availability for aggregated second-order semi-Markov ternary system with working time omission," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 50-60.
    10. Kuo, Ching-Chang & Ke, Jau-Chuan, 2016. "Comparative analysis of standby systems with unreliable server and switching failure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 74-82.
    11. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2016. "Dependence patterns for modeling simultaneous events," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 19-30.
    12. Li, Jingkui & Lu, Yuze & Liu, Xiaona & Jiang, Xiuhong, 2023. "Reliability analysis of cold-standby phased-mission system based on GO-FLOW methodology and the universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
    14. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Madhu Jain & Chandra Shekhar & Rakesh Kumar Meena, 2019. "Performance analysis and control F-policy for fault-tolerant system with working vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 409-431, June.
    16. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    18. Ke, Jau-Chuan & Liu, Tzu-Hsin & Yang, Dong-Yuh, 2018. "Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 12-18.
    19. Yera, Yoel G. & Lillo, Rosa E. & Nielsen, Bo F. & Ramírez-Cobo, Pepa & Ruggeri, Fabrizio, 2021. "A bivariate two-state Markov modulated Poisson process for failure modeling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Miaomiao & Tang, Yinghui & Liu, Liping & Cheng, Jiang, 2013. "A phase-type geometric process repair model with spare device procurement and repairman’s multiple vacations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 310-323.
    2. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    3. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    5. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    6. Eryilmaz, Serkan, 2012. "On the mean residual life of a k-out-of-n:G system with a single cold standby component," European Journal of Operational Research, Elsevier, vol. 222(2), pages 273-277.
    7. Lee, Doo Ho & Kim, Bo Keun, 2015. "A note on the sojourn time distribution of an M/G/1 queue with a single working vacation and vacation interruption," Operations Research Perspectives, Elsevier, vol. 2(C), pages 57-61.
    8. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    9. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    10. Montoro Cazorla, Delia & Pérez-Ocón, Rafael, 2008. "An LDQBD process under degradation, inspection, and two types of repair," European Journal of Operational Research, Elsevier, vol. 190(2), pages 494-508, October.
    11. Yuan, Li & Xu, Jian, 2011. "An optimal replacement policy for a repairable system based on its repairman having vacations," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 868-875.
    12. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    13. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    14. Levitin, Gregory & Xing, Liudong & Peng, Sun & Dai, Yuanshun, 2015. "Optimal choice of standby modes in 1-out-of-N system with respect to mission reliability and cost," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 587-596.
    15. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Y Takemoto & I Arizono, 2016. "A study of MTTF in two-unit standby redundant system with priority under limited information about failure and repair times," Journal of Risk and Reliability, , vol. 230(1), pages 67-74, February.
    18. E.J. Vanderperre & S.S. Makhanov, 2014. "Reliability analysis of a repairable duplex system," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(9), pages 1970-1977, September.
    19. Delia, Montoro-Cazorla & Rafael, Perez-Ocon, 2008. "A maintenance model with failures and inspection following Markovian arrival processes and two repair modes," European Journal of Operational Research, Elsevier, vol. 186(2), pages 694-707, April.
    20. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.