IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v130y2014icp69-75.html
   My bibliography  Save this article

A redundant n-system under shocks and repairs following Markovian arrival processes

Author

Listed:
  • Montoro-Cazorla, Delia
  • Pérez-Ocón, Rafael

Abstract

A system with n components, one online and the rest in standby subject to repair is considered. The shocks causing the failure of the system follow a Markovian arrival process and the successive repair times are governed by another Markovian arrival process independent of the first one. In this way, the interarrival times between successive shocks are dependent and the same for the successive repair times. The Markov process governing the system is constructed and it is studied in a transient and stationary regime, calculating the availability, the reliability and the rate of occurrence of failures. We show how this system extends others previously published in the literature. A numerical application is performed.

Suggested Citation

  • Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A redundant n-system under shocks and repairs following Markovian arrival processes," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 69-75.
  • Handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:69-75
    DOI: 10.1016/j.ress.2014.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014001069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
    2. Yu, Haiyang & Yalaoui, Farouk & Châtelet, Ėric & Chu, Chengbin, 2007. "Optimal design of a maintainable cold-standby system," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 85-91.
    3. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    4. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael & del Carmen Segovia, Maria, 2009. "Replacement policy in a system under shocks following a Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 497-502.
    5. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V., 2012. "A fast approximation method for reliability analysis of cold-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 119-126.
    6. Fermín Mallor & Javier Santos, 2003. "Reliability of systems subject to shocks with a stochastic dependence for the damages," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 427-444, December.
    7. Søren Asmussen, 2000. "Matrix‐analytic Models and their Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 193-226, June.
    8. Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2016. "A warmstandby system under shocks and repair governed by MAPs," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 331-338.
    2. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    3. Chen, Ying & Wang, Ze & Li, YingYi & Kang, Rui & Mosleh, Ali, 2018. "Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 1-12.
    4. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2016. "Dependence patterns for modeling simultaneous events," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 19-30.
    5. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    6. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    2. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    3. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures: A Matrix-Analytic Approach," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
    4. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2015. "A shock and wear model with dependence between the interarrival failures," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 339-352.
    5. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2016. "A warmstandby system under shocks and repair governed by MAPs," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 331-338.
    6. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    7. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    8. Mohamed Kayid & Mashael A. Alshehri, 2023. "Stochastic Comparisons of Lifetimes of Used Standby Systems," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    9. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    10. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    11. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2012. "A shock and wear system under environmental conditions subject to internal failures, repair, and replacement," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 55-61.
    12. Gregory Levitin & Maxim Finkelstein, 2017. "A new stress–strength model for systems subject to stochastic shocks," Journal of Risk and Reliability, , vol. 231(2), pages 172-179, April.
    13. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    14. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
    15. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
    16. Ji Cha & Maxim Finkelstein & Francois Marais, 2014. "Survival of systems with protection subject to two types of external attacks," Annals of Operations Research, Springer, vol. 212(1), pages 79-91, January.
    17. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    18. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    19. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On the general $$\delta $$ δ -shock model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 994-1029, December.
    20. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:69-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.