IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v183y2007i1p278-295.html
   My bibliography  Save this article

A deteriorating cold standby repairable system with priority in use

Author

Listed:
  • Zhang, Yuan Lin
  • Wang, Guan Jun

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhang, Yuan Lin & Wang, Guan Jun, 2007. "A deteriorating cold standby repairable system with priority in use," European Journal of Operational Research, Elsevier, vol. 183(1), pages 278-295, November.
  • Handle: RePEc:eee:ejores:v:183:y:2007:i:1:p:278-295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01018-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y L Zhang & R C M Yam & M J Zuo, 2002. "Optimal replacement policy for a multistate repairable system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(3), pages 336-341, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y Takemoto & I Arizono, 2016. "A study of MTTF in two-unit standby redundant system with priority under limited information about failure and repair times," Journal of Risk and Reliability, , vol. 230(1), pages 67-74, February.
    2. Hanagal David D. & Kanade Rupali A., 2010. "Optimal Replacement Policy Based on the Number of Down Times with Priority in Use," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 243-251, January.
    3. Jianying Yang & Xianyun Meng & Weiyan Guo & Yanqin Guan & Taotao Wang, 2008. "An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair," Modern Applied Science, Canadian Center of Science and Education, vol. 2(6), pages 163-163, November.
    4. Çekyay, B. & Özekici, S., 2010. "Mean time to failure and availability of semi-Markov missions with maximal repair," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1442-1454, December.
    5. Hanagal David D. & Kanade Rupali A., 2010. "Optimal Replacement Policy Based on the Number of Down Times," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 3-12, January.
    6. Guan Jun Wang & Yuan Lin Zhang, 2016. "Optimal replacement policy for a two-dissimilar-component cold standby system with different repair actions," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1021-1031, April.
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal loading of system with random repair time," European Journal of Operational Research, Elsevier, vol. 247(1), pages 137-143.
    8. Emami-Mehrgani, Behnam & Nadeau, Sylvie & Kenné, Jean-Pierre, 2011. "Lockout/tagout and operational risks in the production control of manufacturing systems with passive redundancy," International Journal of Production Economics, Elsevier, vol. 132(2), pages 165-173, August.
    9. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    10. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    11. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    12. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    13. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Papageorgiou, Effie & Kokolakis, George, 2010. "Reliability analysis of a two-unit general parallel system with (n-2) warm standbys," European Journal of Operational Research, Elsevier, vol. 201(3), pages 821-827, March.
    15. Vahid Andalib & Jyotirmoy Sarkar, 2022. "A System with Two Spare Units, Two Repair Facilities, and Two Types of Repairers," Mathematics, MDPI, vol. 10(6), pages 1-13, March.
    16. Yuan, Li & Xu, Jian, 2011. "An optimal replacement policy for a repairable system based on its repairman having vacations," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 868-875.
    17. Eryilmaz, Serkan, 2012. "On the mean residual life of a k-out-of-n:G system with a single cold standby component," European Journal of Operational Research, Elsevier, vol. 222(2), pages 273-277.
    18. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    19. Yu, Miaomiao & Tang, Yinghui & Liu, Liping & Cheng, Jiang, 2013. "A phase-type geometric process repair model with spare device procurement and repairman’s multiple vacations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 310-323.
    20. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal backup frequency in system with random repair time," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 12-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahas, Nabil & Khatab, Abdelhakim & Ait-Kadi, Daoud & Nourelfath, Mustapha, 2008. "Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1658-1672.
    2. Leung, Kit Nam Francis & Zhang, Yuan Lin & Lai, Kin Keung, 2011. "Analysis for a two-dissimilar-component cold standby repairable system with repair priority," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1542-1551.
    3. Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
    4. Zhang, Yuan Lin & Yam, Richard C.M. & Zuo, Ming J., 2007. "A bivariate optimal replacement policy for a multistate repairable system," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 535-542.
    5. Nourelfath, Mustapha & Châtelet, Eric & Nahas, Nabil, 2012. "Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 51-60.
    6. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha & Gershwin, Stanley B., 2017. "Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 61-72.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:183:y:2007:i:1:p:278-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.