IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v145y2016icp74-82.html
   My bibliography  Save this article

Comparative analysis of standby systems with unreliable server and switching failure

Author

Listed:
  • Kuo, Ching-Chang
  • Ke, Jau-Chuan

Abstract

The purpose of this paper is to study the steady-state availability of a repairable system with standby switching failure. The repairable system configuration includes the primary and standby components, where an unreliable server is responsible to repair or monitor the failed ones. The time-to-failure and time-to-repair of the components follow exponential and general distribution, respectively. The server subjects to active breakdown when it is repairing. The time-to-breakdown of the server is also assumed to be exponentially distributed. When the primary components fail, the standby components replace the primary components successfully with probability 1−q. The repair time of the failed components and the repair time of the breakdown server are generally distributed. Further, we frame a practical model with three different repairable system configurations. We use supplementary variable method and integro-differential equations to obtain the steady-state availability of these three different repairable system configurations. Finally, we compare the cost/benefit ratio among the three configurations given the distribution parameters, and to the cost of the primary and standby components.

Suggested Citation

  • Kuo, Ching-Chang & Ke, Jau-Chuan, 2016. "Comparative analysis of standby systems with unreliable server and switching failure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 74-82.
  • Handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:74-82
    DOI: 10.1016/j.ress.2015.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Wei & Loman, James & Song, Thomas, 2015. "A reliability model of a warm standby configuration with two identical sets of units," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 237-245.
    2. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    3. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    4. Kuo-Hsiung Wang & Wen-Lea Pearn, 2003. "Cost benefit analysis of series systems with warm standby components," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 247-258, November.
    5. Quan-Lin Li & Yu Ying & Yiqiang Zhao, 2006. "A BMAP/G/1 Retrial Queue with a Server Subject to Breakdowns and Repairs," Annals of Operations Research, Springer, vol. 141(1), pages 233-270, January.
    6. Kuo-Hsiung Wang & Yi-Chun Liu & Wen Lea Pearn, 2005. "Cost benefit analysis of series systems with warm standby components and general repair time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 329-343, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharifi, Mani & Taghipour, Sharareh & Abhari, Abdolreza, 2021. "Inspection interval optimization for a k-out-of-n load sharing system under a hybrid mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    3. Shekhar, Chandra & Kumar, Neeraj & Gupta, Amit & Kumar, Amit & Varshney, Shreekant, 2020. "Warm-spare provisioning computing network with switching failure, common cause failure, vacation interruption, and synchronized reneging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Lee, Yutae, 2017. "Comments on “Comparative analysis of standby systems with unreliable server and switching failure†[Relib Eng Syst Saf 2016; 145: 74–82]," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 98-100.
    5. Zhang, Changzhen & Yang, Jun & Li, Mingjia & Wang, Ning, 2024. "Reliability analysis of a two-dimensional linear consecutive-(r,s)-out-of-(m,n): F repairable system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Gao, Shan & Wang, Jinting & Zhang, Jie, 2023. "Reliability analysis of a redundant series system with common cause failures and delayed vacation," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Wu, Chia-Huang & Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2021. "Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Madhu Jain & Chandra Shekhar & Rakesh Kumar Meena, 2019. "Performance analysis and control F-policy for fault-tolerant system with working vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 409-431, June.
    9. Chen, Wu-Lin & Wang, Kuo-Hsiung, 2018. "Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 476-486.
    10. Ke, Jau-Chuan & Liu, Tzu-Hsin & Yang, Dong-Yuh, 2018. "Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 12-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    2. Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
    3. Anushri Maji & Asoke Kumar Bhunia & Shyamal Kumar Mondal, 2022. "A production-reliability-inventory model for a series-parallel system with mixed strategy considering shortage, warranty period, credit period in crisp and stochastic sense," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 862-907, September.
    4. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    6. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Ardakan, Mostafa Abouei & Talkhabi, Sajjad & Juybari, Mohammad N., 2022. "Optimal activation order vs. redundancy strategies in reliability optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
    9. Du, Shijia & Zeng, Zhiguo & Cui, Lirong & Kang, Rui, 2017. "Reliability analysis of Markov history-dependent repairable systems with neglected failures," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 134-142.
    10. Abdossaber Peiravi & Mahdi Karbasian & Mostafa Abouei Ardakan, 2018. "K-mixed strategy: A new redundancy strategy for reliability problems," Journal of Risk and Reliability, , vol. 232(1), pages 38-51, February.
    11. Chatwattanasiri, Nida & Coit, David W. & Wattanapongsakorn, Naruemon, 2016. "System redundancy optimization with uncertain stress-based component reliability: Minimization of regret," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 73-83.
    12. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    13. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    14. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    17. Baoliang Liu & Lirong Cui & Yanqing Wen, 2014. "Interval reliability for aggregated Markov repairable system with repair time omission," Annals of Operations Research, Springer, vol. 212(1), pages 169-183, January.
    18. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    19. Liu, Zhitao & Tan, CherMing & Leng, Feng, 2015. "A reliability-based design concept for lithium-ion battery pack in electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 169-177.
    20. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:74-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.