IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v190y2008i2p494-508.html
   My bibliography  Save this article

An LDQBD process under degradation, inspection, and two types of repair

Author

Listed:
  • Montoro Cazorla, Delia
  • Pérez-Ocón, Rafael

Abstract

A warm standby n-system with operational and repair times following phase-type distributions is considered. The online unit goes through degradating levels, determined by inspections. Two types of repairs are performed, preventive and corrective, depending on the degradation level. The standby units undergo corrective repair. This systems is governed by a level-dependent-quasi-birth-and-death proces (LDQBD process), whose generator is constructed. The availability, rate of occurrence of failures, and other quantities of interest are calculated. A numerical example including an optimization problem and illustrating the calculations is presented. This system extend other previously studied in the literature.

Suggested Citation

  • Montoro Cazorla, Delia & Pérez-Ocón, Rafael, 2008. "An LDQBD process under degradation, inspection, and two types of repair," European Journal of Operational Research, Elsevier, vol. 190(2), pages 494-508, October.
  • Handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:494-508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00646-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2006. "A deteriorating two-system with two repair modes and sojourn times phase-type distributed," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 1-9.
    2. Perez-Ocon, Rafael & Montoro-Cazorla, Delia, 2006. "A multiple warm standby system with operational and repair times following phase-type distributions," European Journal of Operational Research, Elsevier, vol. 169(1), pages 178-188, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delia, Montoro-Cazorla & Rafael, Perez-Ocon, 2008. "A maintenance model with failures and inspection following Markovian arrival processes and two repair modes," European Journal of Operational Research, Elsevier, vol. 186(2), pages 694-707, April.
    2. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael & del Carmen Segovia, Maria, 2009. "Replacement policy in a system under shocks following a Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 497-502.
    3. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    4. Gao, Hongda & Cui, Lirong & Yi, He, 2019. "Availability analysis of k-out-of-n: F repairable balanced systems with m sectors," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Chen, Jinyuan & Li, Zehui, 2008. "An extended extreme shock maintenance model for a deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1123-1129.
    6. Alebrant Mendes, Angélica & Coit, David W. & Duarte Ribeiro, José Luis, 2014. "Establishment of the optimal time interval between periodic inspections for redundant systems," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 148-165.
    7. Csenki, Attila, 2009. "Stochastic demand patterns for Markov service facilities with neutral and active periods," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 382-393.
    8. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2016. "A warmstandby system under shocks and repair governed by MAPs," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 331-338.
    9. Wells, Charles E., 2014. "Reliability analysis of a single warm-standby system subject to repairable and nonrepairable failures," European Journal of Operational Research, Elsevier, vol. 235(1), pages 180-186.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:494-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.