Derivatives and Fisher information of bivariate copulas
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-013-0498-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
- Hoebak Haff, Ingrid & Segers, Johan, 2012. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," LIDAM Discussion Papers ISBA 2012003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Andrew J. Patton, 2006.
"Estimation of multivariate models for time series of possibly different lengths,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
- Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173.
- Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
- Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
- Boik, Robert J. & Robinson-Cox, James F., 1998. "Derivatives of the Incomplete Beta Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 3(i01).
- Acar, Elif F. & Genest, Christian & Nešlehová, Johanna, 2012. "Beyond simplified pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 74-90.
- Song, Peter X.K. & Fan, Yanqin & Kalbfleisch, John D., 2005. "Maximization by Parts in Likelihood Inference," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1145-1158, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
- Ackerer Damien & Vatter Thibault, 2017. "Dependent defaults and losses with factor copula models," Dependence Modeling, De Gruyter, vol. 5(1), pages 375-399, December.
- Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
- Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
- Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
- O. Chatrabgoun & G. Parham & R. Chinipardaz, 2017. "A Legendre multiwavelets approach to copula density estimation," Statistical Papers, Springer, vol. 58(3), pages 673-690, September.
- Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
- Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
- Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
- Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
- Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
- Elizabeth D. Schifano & Himchan Jeong & Ved Deshpande & Dipak K. Dey, 2021. "Fully and empirical Bayes approaches to estimating copula-based models for bivariate mixed outcomes using Hamiltonian Monte Carlo," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 133-152, March.
- Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020.
"Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
- Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic Risk in Market Microstructure of Crude Oil and Gasoline Futures Prices: A Hawkes Flocking Model Approach," Papers 2012.04181, arXiv.org.
- repec:cte:wsrepe:27652 is not listed on IDEAS
- Damien Ackerer & Thibault Vatter, 2016. "Dependent Defaults and Losses with Factor Copula Models," Papers 1610.03050, arXiv.org, revised Jan 2018.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
- Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
- Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
- Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
- Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
- Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
- Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
- Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.
- Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
- Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
- Zhiwei Bai & Hongkui Wei & Yingying Xiao & Shufang Song & Sergei Kucherenko, 2021. "A Vine Copula-Based Global Sensitivity Analysis Method for Structures with Multidimensional Dependent Variables," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
- Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
- Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
- Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
- Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
- Nabil Kazi-Tani & Didier Rullière, 2019. "On a construction of multivariate distributions given some multidimensional marginals," Post-Print hal-01575169, HAL.
- Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
- Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
- Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
- Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
More about this item
Keywords
Copula; Expected information; Observed information; Derivatives; 62F10; 62F12; 62F99;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:2:p:525-542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.