IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i9p1126-1136.html
   My bibliography  Save this article

Probabilistic bounding analysis in the Quantification of Margins and Uncertainties

Author

Listed:
  • Sentz, Kari
  • Ferson, Scott

Abstract

The current challenge of nuclear weapon stockpile certification is to assess the reliability of complex, high-consequent, and aging systems without the benefit of full-system test data. In the absence of full-system testing, disparate kinds of information are used to inform certification assessments such as archival data, experimental data on partial systems, data on related or similar systems, computer models and simulations, and expert knowledge. In some instances, data can be scarce and information incomplete. The challenge of Quantification of Margins and Uncertainties (QMU) is to develop a methodology to support decision-making in this informational context. Given the difficulty presented by mixed and incomplete information, we contend that the uncertainty representation for the QMU methodology should be expanded to include more general characterizations that reflect imperfect information. One type of generalized uncertainty representation, known as probability bounds analysis, constitutes the union of probability theory and interval analysis where a class of distributions is defined by two bounding distributions. This has the advantage of rigorously bounding the uncertainty when inputs are imperfectly known. We argue for the inclusion of probability bounds analysis as one of many tools that are relevant for QMU and demonstrate its usefulness as compared to other methods in a reliability example with imperfect input information.

Suggested Citation

  • Sentz, Kari & Ferson, Scott, 2011. "Probabilistic bounding analysis in the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1126-1136.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1126-1136
    DOI: 10.1016/j.ress.2011.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011000652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dian-Qing & Tang, Xiao-Song & Phoon, Kok-Kwang, 2015. "Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 99-106.
    2. Junrui Xu & James H. Lambert, 2015. "Risk‐Cost‐Benefit Analysis for Transportation Corridors with Interval Uncertainties of Heterogeneous Data," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 624-641, April.
    3. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    5. Flage, Roger & Aven, Terje & Berner, Christine L., 2018. "A comparison between a probability bounds analysis and a subjective probability approach to express epistemic uncertainties in a risk assessment context – A simple illustrative example," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 1-10.
    6. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1126-1136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.