IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i5d10.1007_s00180-022-01213-8.html
   My bibliography  Save this article

Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients

Author

Listed:
  • Hirofumi Michimae

    (Kitasato University)

  • Takeshi Emura

    (Kurume University)

Abstract

Ridge regression is a widely used method to mitigate the multicollinearly problem often arising in multiple linear regression. It is well known that the ridge regression estimator can be derived from the Bayesian framework by the posterior mode under a multivariate normal prior. However, the ridge regression model with a copula-based multivariate prior model has not been employed in the Bayesian framework. Motivated by the multicollinearly problem due to an interaction term, we adopt a vine copula to construct the copula-based joint prior distribution. For selected copulas and hyperparameters, we propose Bayesian ridge estimators and credible intervals for regression coefficients. A simulation study is carried out to compare the performance of four different priors (the Clayton, Gumbel, and Gaussian copula priors, and the tri-variate normal prior) on the regression coefficients. Our simulation studies demonstrate that the Archimedean (Clayton and Gumbel) copula priors give more accurate estimates in the presence of multicollinearity compared with the other priors. Finally, a real dataset is analyzed, where the Bayesian ridge estimators and some frequentist estimators are compared.

Suggested Citation

  • Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01213-8
    DOI: 10.1007/s00180-022-01213-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01213-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01213-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ka Wong & Sung Chiu, 2015. "An iterative approach to minimize the mean squared error in ridge regression," Computational Statistics, Springer, vol. 30(2), pages 625-639, June.
    2. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    3. Joe, Harry, 2006. "Generating random correlation matrices based on partial correlations," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2177-2189, November.
    4. Román Salmerón & José García & Catalina García & María del Mar López, 2018. "Transformation of variables and the condition number in ridge estimation," Computational Statistics, Springer, vol. 33(3), pages 1497-1524, September.
    5. M. Norouzirad & M. Arashi, 2019. "Preliminary test and Stein-type shrinkage ridge estimators in robust regression," Statistical Papers, Springer, vol. 60(6), pages 1849-1882, December.
    6. Rajiv Sambasivan & Sourish Das & Sujit K. Sahu, 2020. "A Bayesian perspective of statistical machine learning for big data," Computational Statistics, Springer, vol. 35(3), pages 893-930, September.
    7. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    8. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    9. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    10. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    11. Ulf Schepsmeier & Jakob Stöber, 2014. "Derivatives and Fisher information of bivariate copulas," Statistical Papers, Springer, vol. 55(2), pages 525-542, May.
    12. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
    13. Artin Armagan & Russell Zaretzki, 2010. "Model selection via adaptive shrinkage with t priors," Computational Statistics, Springer, vol. 25(3), pages 441-461, September.
    14. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
    15. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    2. Nusrat Shaheen & Ismail Shah & Amani Almohaimeed & Sajid Ali & Hana N. Alqifari, 2023. "Some Modified Ridge Estimators for Handling the Multicollinearity Problem," Mathematics, MDPI, vol. 11(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
    3. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    4. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2017. "The Vine Philosopher: An interview with Roger Cooke," Dependence Modeling, De Gruyter, vol. 5(1), pages 256-267, December.
    5. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    6. Stöber, Jakob & Czado, Claudia, 2014. "Regime switches in the dependence structure of multidimensional financial data," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 672-686.
    7. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    8. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    9. Zhiwei Bai & Hongkui Wei & Yingying Xiao & Shufang Song & Sergei Kucherenko, 2021. "A Vine Copula-Based Global Sensitivity Analysis Method for Structures with Multidimensional Dependent Variables," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    10. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    11. Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    12. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    13. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Dependence structure in the Australian electricity markets: New evidence from regular vine copulae," Energy Economics, Elsevier, vol. 90(C).
    14. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    15. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    16. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    17. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    19. Madar, Vered, 2015. "Direct formulation to Cholesky decomposition of a general nonsingular correlation matrix," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 142-147.
    20. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01213-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.