IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v194y2020ics0951832017310517.html
   My bibliography  Save this article

Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept

Author

Listed:
  • Ham, Dong-Han
  • Park, Jinkyun

Abstract

The safe operation of complex socio-technical systems including NPPs (Nuclear Power Plants) is a determinant for ensuring their sustainability. From this concern, it should be emphasized that a large portion of safety significant events were directly and/or indirectly caused by human errors. This means that the role of an HRA (Human Reliability Analysis) is critical because one of its applications is to systematically distinguish error-prone tasks triggering safety significant events. To this end, it is very important for HRA practitioners to access diverse HRA data which are helpful for understanding how and why human errors have occurred. In this study, a novel approach is suggested based on the Safety-II concept, which allows us to collect HRA data by considering failure and success cases in parallel. In addition, since huge amount of information can be gathered if the failure and success cases are simultaneously involved, a big data analysis technique called the CART (Classification And Regression Tree) is applied to deal with this problem. As a result, it seems that the novel approach proposed by combining the Safety-II concept with the CART technique is useful because HRA practitioners are able to get HRA data with respect to diverse task contexts.

Suggested Citation

  • Ham, Dong-Han & Park, Jinkyun, 2020. "Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:reensy:v:194:y:2020:i:c:s0951832017310517
    DOI: 10.1016/j.ress.2018.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017310517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Ladan, S.B. & Turan, O., 2012. "Human reliability analysis—Taxonomy and praxes of human entropy boundary conditions for marine and offshore applications," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 43-54.
    2. Yoon, Young Sik & Ham, Dong-Han & Yoon, Wan Chul, 2016. "Application of activity theory to analysis of human-related accidents: Method and case studies," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 22-34.
    3. Sujan, Mark & Spurgeon, Peter & Cooke, Matthew, 2015. "The role of dynamic trade-offs in creating safety—A qualitative study of handover across care boundaries in emergency care," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 54-62.
    4. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    5. Stock, Gregory N. & McFadden, Kathleen L. & Gowen III, Charles R., 2007. "Organizational culture, critical success factors, and the reduction of hospital errors," International Journal of Production Economics, Elsevier, vol. 106(2), pages 368-392, April.
    6. Woltjer, Rogier & Pinska-Chauvin, Ella & Laursen, Tom & Josefsson, Billy, 2015. "Towards understanding work-as-done in air traffic management safety assessment and design," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 115-130.
    7. Jinkyun Park, 2009. "The Complexity of Proceduralized Tasks," Springer Series in Reliability Engineering, Springer, number 978-1-84882-791-2, June.
    8. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    9. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    10. Park, Jinkyun & Jung, Wondea, 2015. "A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 21-30.
    11. Park, Jinkyun & Kim, Yochan & Jung, Wondea, 2018. "Calculating nominal human error probabilities from the operation experience of domestic nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 215-225.
    12. Park, J. & Chang, Y.J. & Kim, Y. & Choi, S. & Kim, S. & Jung, W., 2017. "The use of the SACADA taxonomy to analyze simulation records: Insights and suggestions," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 174-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Weiliang Qiao & Yang Liu & Xiaoxue Ma & He Lan, 2021. "Cognitive Gap and Correlation of Safety-I and Safety-II: A Case of Maritime Shipping Safety Management," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    4. Park, Jooyoung & Boring, Ronald L. & Ulrich, Thomas A. & Lew, Roger & Lee, Sungheon & Park, Bumjun & Kim, Jonghyun, 2022. "A framework to collect human reliability analysis data for nuclear power plants using a simplified simulator and student operators," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Federica De Leo & Valerio Elia & Maria Grazia Gnoni & Fabiana Tornese, 2023. "Integrating Safety-I and Safety-II Approaches in Near Miss Management: A Critical Analysis," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    6. Zapola, Guilherme S. & Silva, Evandro J. & Alves, Cláudio J.P. & Müller, Carlos, 2024. "Towards a resilience assessment framework for the airport passenger terminal operations," Journal of Air Transport Management, Elsevier, vol. 114(C).
    7. Ji, Changcheng & Gao, Fei & Liu, Wenjiang, 2024. "Dependence assessment in human reliability analysis based on cloud model and best-worst method," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Park, Jinkyun, 2024. "A framework to determine the holistic multiplier of performance shaping factors in human reliability analysis – An explanatory study," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Chen, Yuanjiang & Feng, Wei & Jiang, Zhiqiang & Duan, Lingling & Cheng, Shuangyi, 2021. "An accident causation model based on safety information cognition and its application," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Park, Jinkyun & Kim, Yochan & Jung, Wondea, 2018. "Calculating nominal human error probabilities from the operation experience of domestic nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 215-225.
    6. Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    7. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Ge, Xiangyu & Zhou, Qianxiang & Liu, Zhongqi, 2020. "Assessment of space station on-orbit maintenance task complexity," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Jenkins A. Asaah & Beatrice L. Asaah & Austin W. Luguterah, 2020. "Diagnosing the Organizational Culture of Rural Community Banks in Ghana and Its Effects on Their Financial Performance," Journal of Social Science Studies, Macrothink Institute, vol. 7(2), pages 86-114, December.
    10. Kwan Soo Hong & DonHee Lee, 2018. "Impact of operational innovations on customer loyalty in the healthcare sector," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 575-600, September.
    11. Zu, Xingxing & Robbins, Tina L. & Fredendall, Lawrence D., 2010. "Mapping the critical links between organizational culture and TQM/Six Sigma practices," International Journal of Production Economics, Elsevier, vol. 123(1), pages 86-106, January.
    12. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Jang, Inseok & Kim, Yochan & Park, Jinkyun, 2021. "Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Alkhoraif, Abdullah & Rashid, Hamad & McLaughlin, Patrick, 2019. "Lean implementation in small and medium enterprises: Literature review," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. de Vries, Jan, 2011. "The shaping of inventory systems in health services: A stakeholder analysis," International Journal of Production Economics, Elsevier, vol. 133(1), pages 60-69, September.
    16. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    18. Qiansong Zhang & Taiwen Feng & Long Cheng & Qingsong He, 2022. "Institutional force and firm performance: Do employee green involvement and flexibility‐oriented culture matter?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 950-964, July.
    19. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    20. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:194:y:2020:i:c:s0951832017310517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.