IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i5p534-544.html
   My bibliography  Save this article

Integrating several formalisms in order to increase Fault Trees' modeling power

Author

Listed:
  • Codetta-Raiteri, Daniele

Abstract

The Fault Tree (FT) is a widespread model in the field of Reliability, but its modeling power is very limited. Therefore, several FT extensions have been proposed in the literature, each introducing particular modeling primitives, but in a separate way. In this paper, we integrate the primitives coming from three relevant FT extensions (parametric, dynamic, and repairable FT), into the formalism called generalized FT (GFT). We define each primitive in such a way that it can be combined with any other one. This allows to compactly represent redundancies and symmetries of the system structure, set several kinds of dependency among the events, and model repair processes, in the same model. The paper provides also the analysis process for GFT models, based on the modular approach. In particular, we provide the conditions to detect modules, considering the presence of all the primitives. Besides modules, we exploit the parametric form also at the solution level, with the aim of reducing the cost of analysis.

Suggested Citation

  • Codetta-Raiteri, Daniele, 2011. "Integrating several formalisms in order to increase Fault Trees' modeling power," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 534-544.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:5:p:534-544
    DOI: 10.1016/j.ress.2010.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010002838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manno, G. & Chiacchio, F. & Compagno, L. & D'Urso, D. & Trapani, N., 2014. "Conception of Repairable Dynamic Fault Trees and resolution by the use of RAATSS, a Matlab® toolbox based on the ATS formalism," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 250-262.
    2. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:5:p:534-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.