IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v131y2019icp159-175.html
   My bibliography  Save this article

Model-based curve registration via stochastic approximation EM algorithm

Author

Listed:
  • Fu, Eric
  • Heckman, Nancy

Abstract

Functional data often exhibit both amplitude and phase variation around a common base shape, with phase variation represented by a so called warping function. The process of removing phase variation by curve alignment and inference of the warping functions is referred to as curve registration. When functional data are observed with substantial noise, model-based methods can be employed for simultaneous smoothing and curve registration. However, the nonlinearity of the model often renders the inference computationally challenging. An alternative method for model-based curve registration is proposed which is computationally more stable and efficient than existing approaches in the literature. The proposed method is applied to the analysis of elephant seal dive profiles. The result shows that more intuitive groupings can be obtained by clustering on phase variations via the predicted warping functions.

Suggested Citation

  • Fu, Eric & Heckman, Nancy, 2019. "Model-based curve registration via stochastic approximation EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 159-175.
  • Handle: RePEc:eee:csdana:v:131:y:2019:i:c:p:159-175
    DOI: 10.1016/j.csda.2018.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301543
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyndia C. Brumback & Mary J. Lindstrom, 2004. "Self Modeling with Flexible, Random Time Transformations," Biometrics, The International Biometric Society, vol. 60(2), pages 461-470, June.
    2. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    3. Telesca, Donatello & Inoue, Lurdes Y.T., 2008. "Bayesian Hierarchical Curve Registration," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 328-339, March.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    6. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    2. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    3. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    4. Shuang Wu & Hans-Georg Müller, 2011. "Response-Adaptive Regression for Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 852-860, September.
    5. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    6. Xinyue Chang & Yehua Li & Yi Li, 2023. "Asynchronous and error‐prone longitudinal data analysis via functional calibration," Biometrics, The International Biometric Society, vol. 79(4), pages 3374-3387, December.
    7. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    8. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    9. Lihui Zhao & Tom Chen & Vladimir Novitsky & Rui Wang, 2021. "Joint penalized spline modeling of multivariate longitudinal data, with application to HIV‐1 RNA load levels and CD4 cell counts," Biometrics, The International Biometric Society, vol. 77(3), pages 1061-1074, September.
    10. Wong, Raymond K.W. & Zhang, Xiaoke, 2019. "Nonparametric operator-regularized covariance function estimation for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 131-144.
    11. Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    12. Hao Ji & Hans-Georg Müller, 2017. "Optimal designs for longitudinal and functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 859-876, June.
    13. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    14. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
    15. Gottlieb, Andrea & Müller, Hans-Georg, 2012. "A stickiness coefficient for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4000-4010.
    16. Wei, Jiawei & Zhou, Lan, 2010. "Model selection using modified AIC and BIC in joint modeling of paired functional data," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1918-1924, December.
    17. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    18. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.
    19. Veerabhadran Baladandayuthapani & Bani K. Mallick & Mee Young Hong & Joanne R. Lupton & Nancy D. Turner & Raymond J. Carroll, 2008. "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis," Biometrics, The International Biometric Society, vol. 64(1), pages 64-73, March.
    20. Shin, Yei Eun & Zhou, Lan & Ding, Yu, 2022. "Joint estimation of monotone curves via functional principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:131:y:2019:i:c:p:159-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.