IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i5p1978-1995.html
   My bibliography  Save this article

Bayesian multi‐level mixed‐effects model for influenza dynamics

Author

Listed:
  • Hanwen Huang

Abstract

Influenza A viruses (IAV) are the only influenza viruses known to cause flu pandemics. Understanding the evolution of different sub‐types of IAV on their natural hosts is important for preventing and controlling the virus. We propose a mechanism‐based Bayesian multi‐level mixed‐effects model for characterising influenza viral dynamics, described by a set of ordinary differential equations (ODE). Both strain‐specific and subject‐specific random effects are included for the ODE parameters. Our models can characterise the common features in the population while taking into account the variations among individuals. The random effects selection is conducted at strain level through re‐parameterising the covariance parameters of the corresponding random effect distribution. Our method does not need to solve ODE directly. We demonstrate that the posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and a real data from a study relating virus load estimates from influenza infections in ducks.

Suggested Citation

  • Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1978-1995
    DOI: 10.1111/rssc.12603
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12603
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    2. Hongyu Miao & Carrie Dykes & Lisa M. Demeter & Hulin Wu, 2009. "Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multimodel Inference," Biometrics, The International Biometric Society, vol. 65(1), pages 292-300, March.
    3. Zhen Chen & David B. Dunson, 2003. "Random Effects Selection in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 59(4), pages 762-769, December.
    4. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    5. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    6. Yangxin Huang & Dacheng Liu & Hulin Wu, 2006. "Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System," Biometrics, The International Biometric Society, vol. 62(2), pages 413-423, June.
    7. Liang, Hua & Wu, Hulin, 2008. "Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1570-1583.
    8. Yangxin Huang & Hulin Wu, 2006. "A Bayesian approach for estimating antiviral efficacy in HIV dynamic models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(2), pages 155-174.
    9. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    10. Hanwen Huang & Andreas Handel & Xiao Song, 2020. "A Bayesian approach to estimate parameters of ordinary differential equation," Computational Statistics, Springer, vol. 35(3), pages 1481-1499, September.
    11. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    2. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    3. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    4. Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & Thiébaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.
    5. Hanwen Huang & Andreas Handel & Xiao Song, 2020. "A Bayesian approach to estimate parameters of ordinary differential equation," Computational Statistics, Springer, vol. 35(3), pages 1481-1499, September.
    6. Lee, Kyoungjae & Lee, Jaeyong & Dass, Sarat C., 2018. "Inference for differential equation models using relaxation via dynamical systems," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 116-134.
    7. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    8. Zhou, Jie, 2015. "Detection of influential measurement for ordinary differential equation with application to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 324-332.
    9. Zhou, Jie & Han, Lu & Liu, Sanyang, 2013. "Nonlinear mixed-effects state space models with applications to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1448-1456.
    10. Zhang, Tingting & Sun, Yinge & Li, Huazhang & Yan, Guofen & Tanabe, Seiji & Miao, Ruizhong & Wang, Yaotian & Caffo, Brian S. & Quigg, Mark S., 2020. "Bayesian inference of a directional brain network model for intracranial EEG data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Hong, Zhaoping & Lian, Heng, 2012. "Time-varying coefficient estimation in differential equation models with noisy time-varying covariates," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 58-67, January.
    12. Qiu, Xing & Xu, Tao & Soltanalizadeh, Babak & Wu, Hulin, 2022. "Identifiability analysis of linear ordinary differential equation systems with a single trajectory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    13. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    14. Hooker, Giles & Ramsay, James O. & Xiao, Luo, 2016. "CollocInfer: Collocation Inference in Differential Equation Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i02).
    15. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    16. Mu Niu & Joe Wandy & Rónán Daly & Simon Rogers & Dirk Husmeier, 2021. "R package for statistical inference in dynamical systems using kernel based gradient matching: KGode," Computational Statistics, Springer, vol. 36(1), pages 715-747, March.
    17. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    18. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    19. Ahn, Kwang Woo & Chan, Kung-Sik, 2014. "Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 243-254.
    20. Ying Zhu, 2021. "Phase transitions in nonparametric regressions," Papers 2112.03626, arXiv.org, revised Nov 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1978-1995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.