IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1285-d1352985.html
   My bibliography  Save this article

A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types

Author

Listed:
  • Jinrong Wu

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Su Nguyen

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Damminda Alahakoon

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Daswin De Silva

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Nishan Mills

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Prabod Rathnayaka

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Harsha Moraliyage

    (Research Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Andrew Jennings

    (Infrastructure and Operations Group, La Trobe University, Bundoora, VIC 3086, Australia)

Abstract

Building energy baseline models, particularly machine learning-based models, are a core aspect in the evaluation of building energy performance to identify inefficient energy consumption behavior. In smart city design, energy planners and decision makers require comprehensive information on energy consumption across diverse building types as well as comparisons between different types of buildings. However, there is no comprehensive study of baseline modeling across the main building types to help identify factors that influence the performance of different machine learning algorithms for baseline modeling. Therefore, the goal of this paper is to review and analyze energy consumption behavior and evaluate the prediction performance and interpretability of machine learning-based baseline modeling techniques across major building types. The results have shown that the Extreme Gradient Boosting Machine (XGBoost) model is the most accurate baseline modeling method for all building types. Time-related factors, especially the week of the year and the day of the week, have the most impact on energy consumption across all building types. This study is presented as a useful resource for smart city energy managers to help in choosing and setting up appropriate methodologies for better operational effectiveness and efficiencies when designing and planning smart energy systems.

Suggested Citation

  • Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1285-:d:1352985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    2. Granderson, Jessica & Price, Phillip N. & Jump, David & Addy, Nathan & Sohn, Michael D., 2015. "Automated measurement and verification: Performance of public domain whole-building electric baseline models," Applied Energy, Elsevier, vol. 144(C), pages 106-113.
    3. Javeed Nizami, SSAK & Al-Garni, Ahmed Z, 1995. "Forecasting electric energy consumption using neural networks," Energy Policy, Elsevier, vol. 23(12), pages 1097-1104, December.
    4. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    5. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    6. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman, 2023. "Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
    3. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    4. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    5. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    6. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    8. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    9. Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
    10. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    11. Abdulrahman Alanezi & Kevin P. Hallinan & Rodwan Elhashmi, 2021. "Using Smart-WiFi Thermostat Data to Improve Prediction of Residential Energy Consumption and Estimation of Savings," Energies, MDPI, vol. 14(1), pages 1-16, January.
    12. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    14. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    15. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
    16. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    17. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    18. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    19. Bassamzadeh, Nastaran & Ghanem, Roger, 2017. "Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks," Applied Energy, Elsevier, vol. 193(C), pages 369-380.
    20. Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1285-:d:1352985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.