IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v91y2014icp71-81.html
   My bibliography  Save this article

Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes

Author

Listed:
  • Silva, Marcos Dornelas Freitas Machado e
  • Calijuri, Maria Lúcia
  • Sales, Francisco José Ferreira de
  • Souza, Mauro Henrique Batalha de
  • Lopes, Lucas Sampaio

Abstract

Recent research has highlighted the positive role of green areas in urban environments, providing numerous social, environmental and economic services, such as mitigation of the urban heat island effect, storm attenuation, increased water infiltration into the soil, reduction of noise and air pollution, among others. However, the maintenance of green areas may result in high consumption of water, reaching 50% of the total consumption in some municipalities, and energy, becoming a reason of concern. The present study aimed to integrate techniques and technologies that promote the automatic and efficient irrigation of urban landscapes, using alternative sources of energy and water, toward its sustainability. The conceptual unit was able to reduce in 64% the water consumed in irrigation. Rainwater met 69% of the demand and the photovoltaic system supplied all the energy required. The economic feasibility analysis showed that the conceptual unit is financially unfeasible, under the conditions of this study. However, with some interventions for reusing the surplus energy and water, and considering the higher fees charged by other cities, the investment became attractive. In this new scenario, the internal rate of return (15 years) was 27.3% and the discounted payback period was 4.9 years.

Suggested Citation

  • Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
  • Handle: RePEc:eee:recore:v:91:y:2014:i:c:p:71-81
    DOI: 10.1016/j.resconrec.2014.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914001694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farreny, R. & Gabarrell, X. & Rieradevall, J., 2011. "Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 686-694.
    2. Meah, Kala & Fletcher, Steven & Ula, Sadrul, 2008. "Solar photovoltaic water pumping for remote locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 472-487, February.
    3. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    4. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    5. Bouzidi, B., 2011. "Viability of solar or wind for water pumping systems in the Algerian Sahara regions – case study Adrar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4436-4442.
    6. Hashim, H. & Hudzori, A. & Yusop, Z. & Ho, W.S., 2013. "Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 1-9.
    7. Liang, Xiao & van Dijk, Meine Pieter, 2011. "Economic and financial analysis on rainwater harvesting for agricultural irrigation in the rural areas of Beijing," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1100-1108.
    8. Romero, R. & Muriel, J.L. & García, I. & Muñoz de la Peña, D., 2012. "Research on automatic irrigation control: State of the art and recent results," Agricultural Water Management, Elsevier, vol. 114(C), pages 59-66.
    9. Hamidat, A. & Benyoucef, B., 2009. "Systematic procedures for sizing photovoltaic pumping system, using water tank storage," Energy Policy, Elsevier, vol. 37(4), pages 1489-1501, April.
    10. Yuan, Tian & Fengmin, Li & Puhai, Liu, 2003. "Economic analysis of rainwater harvesting and irrigation methods, with an example from China," Agricultural Water Management, Elsevier, vol. 60(3), pages 217-226, May.
    11. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.
    12. Meah, Kala & Ula, Sadrul & Barrett, Steven, 2008. "Solar photovoltaic water pumping--opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1162-1175, May.
    13. McCready, M.S. & Dukes, M.D. & Miller, G.L., 2009. "Water conservation potential of smart irrigation controllers on St. Augustinegrass," Agricultural Water Management, Elsevier, vol. 96(11), pages 1623-1632, November.
    14. Klok, Lisette & Zwart, Sander & Verhagen, Henk & Mauri, Elena, 2012. "The surface heat island of Rotterdam and its relationship with urban surface characteristics," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 23-29.
    15. O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyhaneh Hashemi Sigari & Thomas Panagopoulos, 2024. "A Multicriteria Decision-Making Approach for Urban Water Features: Ecological Landscape Architecture Evaluation," Land, MDPI, vol. 13(11), pages 1-20, October.
    2. Chamizo-Gonzalez, Julián & Cano-Montero, Elisa Isabel & Muñoz-Colomina, Clara Isabel, 2016. "Municipal Solid Waste Management services and its funding in Spain," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 65-72.
    3. Isabella Tamine Parra Miranda & Juliana Moletta & Bruno Pedroso & Luiz Alberto Pilatti & Claudia Tania Picinin, 2021. "A Review on Green Technology Practices at BRICS Countries: Brazil, Russia, India, China, and South Africa," SAGE Open, , vol. 11(2), pages 21582440211, May.
    4. Min Zhao & Qin Chen & Michael Johnson & Abhishek Kumar Awasthi & Qing Huang & Weihua Gu & Chenglong Zhang & Jianfeng Bai & Zhen Tian & Ruyan Li & Jingwei Wang, 2021. "Microwave Sintering Rapid Synthesis of Nano/Micron β-SiC from Waste Lithium Battery Graphite and Photovoltaic Silicon to Achieve Carbon Reduction," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    5. Mahla Tayefi Nasrabadi, 2022. "How do nature-based solutions contribute to urban landscape sustainability?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 576-591, January.
    6. Zhang, Da & Huang, Qingxu & He, Chunyang & Wu, Jianguo, 2017. "Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 115-130.
    7. Wu, Tian & Zhou, Wei & Yan, Xiaoyu & Ou, Xunmin, 2016. "Optimal policy design for photovoltaic power industry with positive externality in China," Resources, Conservation & Recycling, Elsevier, vol. 115(C), pages 22-30.
    8. Peterson, Eric Laurentius, 2016. "Transcontinental assessment of secure rainwater harvesting systems across Australia," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 33-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benbelkacem, Samir & Belhocine, Mahmoud & Bellarbi, Abdelkader & Zenati-Henda, Nadia & Tadjine, Mohamed, 2013. "Augmented reality for photovoltaic pumping systems maintenance tasks," Renewable Energy, Elsevier, vol. 55(C), pages 428-437.
    2. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    3. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    4. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    5. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    6. Al-Smairan, Mohammad, 2012. "Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia, Tall Hassan station: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4500-4507.
    7. Reca, J. & Torrente, C. & López-Luque, R. & Martínez, J., 2016. "Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 1143-1154.
    8. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    9. López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
    10. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    11. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    12. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    13. Carricondo-Antón, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & Royuela Tomas, A. & Sala, A., 2022. "Evaluating the use of meteorological predictions in directly pumped irrigational operations using photovoltaic energy," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Yu, Yingdong & Liu, Jiahong & Wang, Ying & Xiang, Chenyao & Zhou, Jinjun, 2018. "Practicality of using solar energy for cassava irrigation in the Guangxi Autonomous Region, China," Applied Energy, Elsevier, vol. 230(C), pages 31-41.
    15. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    16. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    17. Senol, Ramazan, 2012. "An analysis of solar energy and irrigation systems in Turkey," Energy Policy, Elsevier, vol. 47(C), pages 478-486.
    18. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    19. Swan, Lukas G. & Allen, Peter L., 2010. "Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system," Renewable Energy, Elsevier, vol. 35(9), pages 2015-2026.
    20. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:91:y:2014:i:c:p:71-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.